July  2017, 4(3): 191-194. doi: 10.3934/jdg.2017011

On Zermelo's theorem

1. 

Department of Economics, University of Iowa, Iowa City, IA 52242-1994, USA

2. 

Department of Economics, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

* Corresponding author

Received  February 2017 Revised  February 2017 Published  April 2017

A famous result in game theory known as Zermelo's theorem says that ''in chess either White can force a win, or Black can force a win, or both sides can force at least a draw". The present paper extends this result to the class of all finite-stage two-player games of complete information with alternating moves. It is shown that in any such game either the first player has a winning strategy, or the second player has a winning strategy, or both have unbeatable strategies.

Citation: Rabah Amir, Igor V. Evstigneev. On Zermelo's theorem. Journal of Dynamics & Games, 2017, 4 (3) : 191-194. doi: 10.3934/jdg.2017011
References:
[1]

R. AmirI. V. Evstigneev and K. R. Schenk-Hoppé, Asset market games of survival: A synthesis of evolutionary and dynamic games, Annals of Finance, 9 (2013), 121-144.  doi: 10.1007/s10436-012-0210-5.  Google Scholar

[2]

R. J. Aumann, Lectures on Game Theory, Westview, Boulder, 1989. Google Scholar

[3]

E. Borel, La théorie du jeu et les équations intégrales á noyau symétrique, Comptes Rendus de l'Académie des Sciences, 173 (1921), 1304-1308.  doi: 10.2307/1906946.  Google Scholar

[4]

C. L. Bouton, Nim, a game with a complete mathematical theory, Annals of Mathematics, 3 (1901/02), 35-39. doi: 10.2307/1967631.  Google Scholar

[5]

A. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4190-4.  Google Scholar

[6]

Yu. Khomskii, Intensive Course on Infinite Games, Sofia University, 2010. Available from: https://www.math.uni-hamburg.de/home/khomskii/infinitegames2010/InfiniteGamesSofia.pdf. Google Scholar

[7]

F. Kojima, Stability and instability of the unbeatable strategy in dynamic processes, International Journal of Economic Theory, 2 (2006), 41-53.  doi: 10.1111/j.1365-2966.2006.0023.x.  Google Scholar

[8]

U. Schwalbe and P. Walker, Zermelo and the early history of game theory, Games and Economic Behavior, 34 (2001), 123-137.  doi: 10.1006/game.2000.0794.  Google Scholar

[9]

E. Zermelo, Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels, in Proceedings of the Fifth International Congress of Mathematicians (Cambridge 1912), (eds. E. W. Hobson and A. E. H. Love), Cambridge University Press, Cambridge, 2 (1913), 501-504. Google Scholar

show all references

References:
[1]

R. AmirI. V. Evstigneev and K. R. Schenk-Hoppé, Asset market games of survival: A synthesis of evolutionary and dynamic games, Annals of Finance, 9 (2013), 121-144.  doi: 10.1007/s10436-012-0210-5.  Google Scholar

[2]

R. J. Aumann, Lectures on Game Theory, Westview, Boulder, 1989. Google Scholar

[3]

E. Borel, La théorie du jeu et les équations intégrales á noyau symétrique, Comptes Rendus de l'Académie des Sciences, 173 (1921), 1304-1308.  doi: 10.2307/1906946.  Google Scholar

[4]

C. L. Bouton, Nim, a game with a complete mathematical theory, Annals of Mathematics, 3 (1901/02), 35-39. doi: 10.2307/1967631.  Google Scholar

[5]

A. Kechris, Classical Descriptive Set Theory, Springer-Verlag, New York, 1995. doi: 10.1007/978-1-4612-4190-4.  Google Scholar

[6]

Yu. Khomskii, Intensive Course on Infinite Games, Sofia University, 2010. Available from: https://www.math.uni-hamburg.de/home/khomskii/infinitegames2010/InfiniteGamesSofia.pdf. Google Scholar

[7]

F. Kojima, Stability and instability of the unbeatable strategy in dynamic processes, International Journal of Economic Theory, 2 (2006), 41-53.  doi: 10.1111/j.1365-2966.2006.0023.x.  Google Scholar

[8]

U. Schwalbe and P. Walker, Zermelo and the early history of game theory, Games and Economic Behavior, 34 (2001), 123-137.  doi: 10.1006/game.2000.0794.  Google Scholar

[9]

E. Zermelo, Über eine Anwendung der Mengenlehre auf die Theorie des Schachspiels, in Proceedings of the Fifth International Congress of Mathematicians (Cambridge 1912), (eds. E. W. Hobson and A. E. H. Love), Cambridge University Press, Cambridge, 2 (1913), 501-504. Google Scholar

[1]

Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics & Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013

[2]

Pablo Blanc, Juan J. Manfredi, Julio D. Rossi. Games for Pucci's maximal operators. Journal of Dynamics & Games, 2019, 6 (4) : 277-289. doi: 10.3934/jdg.2019019

[3]

Leon Petrosyan, David Yeung. Shapley value for differential network games: Theory and application. Journal of Dynamics & Games, 2021, 8 (2) : 151-166. doi: 10.3934/jdg.2020021

[4]

Kuang Huang, Xuan Di, Qiang Du, Xi Chen. A game-theoretic framework for autonomous vehicles velocity control: Bridging microscopic differential games and macroscopic mean field games. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4869-4903. doi: 10.3934/dcdsb.2020131

[5]

Kashi Behrstock, Michel Benaïm, Morris W. Hirsch. Smale strategies for network prisoner's dilemma games. Journal of Dynamics & Games, 2015, 2 (2) : 141-155. doi: 10.3934/jdg.2015.2.141

[6]

Feimin Zhong, Jinxing Xie, Jing Jiao. Solutions for bargaining games with incomplete information: General type space and action space. Journal of Industrial & Management Optimization, 2018, 14 (3) : 953-966. doi: 10.3934/jimo.2017084

[7]

Miquel Oliu-Barton. Asymptotically optimal strategies in repeated games with incomplete information and vanishing weights. Journal of Dynamics & Games, 2019, 6 (4) : 259-275. doi: 10.3934/jdg.2019018

[8]

Jide Sun, Lili Wang. The interaction between BIM's promotion and interest game under information asymmetry. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1301-1319. doi: 10.3934/jimo.2015.11.1301

[9]

Alexander J. Zaslavski. Structure of approximate solutions of dynamic continuous time zero-sum games. Journal of Dynamics & Games, 2014, 1 (1) : 153-179. doi: 10.3934/jdg.2014.1.153

[10]

Matthew Bourque, T. E. S. Raghavan. Policy improvement for perfect information additive reward and additive transition stochastic games with discounted and average payoffs. Journal of Dynamics & Games, 2014, 1 (3) : 347-361. doi: 10.3934/jdg.2014.1.347

[11]

Alexander J. Zaslavski. Turnpike properties of approximate solutions of dynamic discrete time zero-sum games. Journal of Dynamics & Games, 2014, 1 (2) : 299-330. doi: 10.3934/jdg.2014.1.299

[12]

Martino Bardi, Shigeaki Koike, Pierpaolo Soravia. Pursuit-evasion games with state constraints: dynamic programming and discrete-time approximations. Discrete & Continuous Dynamical Systems, 2000, 6 (2) : 361-380. doi: 10.3934/dcds.2000.6.361

[13]

Alan Beggs. Learning in monotone bayesian games. Journal of Dynamics & Games, 2015, 2 (2) : 117-140. doi: 10.3934/jdg.2015.2.117

[14]

Konstantin Avrachenkov, Giovanni Neglia, Vikas Vikram Singh. Network formation games with teams. Journal of Dynamics & Games, 2016, 3 (4) : 303-318. doi: 10.3934/jdg.2016016

[15]

İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021010

[16]

Carlos Hervés-Beloso, Emma Moreno-García. Market games and walrasian equilibria. Journal of Dynamics & Games, 2020, 7 (1) : 65-77. doi: 10.3934/jdg.2020004

[17]

Hassan Najafi Alishah, Pedro Duarte. Hamiltonian evolutionary games. Journal of Dynamics & Games, 2015, 2 (1) : 33-49. doi: 10.3934/jdg.2015.2.33

[18]

Dario Bauso, Thomas W. L. Norman. Approachability in population games. Journal of Dynamics & Games, 2020, 7 (4) : 269-289. doi: 10.3934/jdg.2020019

[19]

Yonghui Zhou, Jian Yu, Long Wang. Topological essentiality in infinite games. Journal of Industrial & Management Optimization, 2012, 8 (1) : 179-187. doi: 10.3934/jimo.2012.8.179

[20]

Serap Ergün, Osman Palanci, Sirma Zeynep Alparslan Gök, Şule Nizamoğlu, Gerhard Wilhelm Weber. Sequencing grey games. Journal of Dynamics & Games, 2020, 7 (1) : 21-35. doi: 10.3934/jdg.2020002

 Impact Factor: 

Metrics

  • PDF downloads (84)
  • HTML views (90)
  • Cited by (0)

Other articles
by authors

[Back to Top]