[1]
|
B. Allen and M. A. Nowak, Games on graphs, EMS Surveys in Mathematical Sciences, 1 (2014), 113-151.
doi: 10.4171/EMSS/3.
|
[2]
|
T. Antal, S. Redner and V. Sood, Evolutionary dynamics on degree -heterogeneous graphs, Phys Rev Lett, 96 (2006), 188014.
|
[3]
|
A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512.
doi: 10.1126/science.286.5439.509.
|
[4]
|
B. Bollobás,
Random Graphs, Academic Press, London, 1985.
|
[5]
|
B. Bollobás, O. Riordan, J. Spenser and G. Tusnády, The degree sequence of a scale-free random graph process, Random Struct.Alg, 18 (2001), 279-290.
doi: 10.1002/rsa.1009.
|
[6]
|
M. Broom and C. Cannings, A dynamic network population model with strategic link formation governed by individual preferences, J. Theor. Biol., 335 (2013), 160-168.
doi: 10.1016/j.jtbi.2013.06.024.
|
[7]
|
M. Broom and C. Cannings, Graphic Deviation, Discrete Mathematics, 338 (2015), 701-711.
doi: 10.1016/j.disc.2014.12.011.
|
[8]
|
M. Broom and C. Cannings, Games on dynamically evolving networks: Game theoretical modelling of a dynamically evolving network Ⅱ: special target sequences, In preparation.
|
[9]
|
M. Broom and J. Rychtář, An analysis of the fixation probability of a mutant on special classes of non-directed graphs, Proc R Soc A, 464 (2008), 2609-2627.
doi: 10.1098/rspa.2008.0058.
|
[10]
|
C. Cannings, The latent roots of certain markov chans arising in genetics: A new approach Ⅱ. Further haploid models, Adv.Appl.Prob., 7 (1975), 264-282.
doi: 10.1017/S0001867800045985.
|
[11]
|
C. Capitanio, Sociability and response to video playback in adult male rhesus monkeys (macac mulatta), Primates, 43 (2002), 169-177.
|
[12]
|
M. Cavaliere, S. Sedwards, C. E. Tarnita, M. A. Nowak and A. Csikász-Nagy, Prosperity is associated with instability in dynamical networks, J. Theor. Biol., 299 (2012), 126-138.
doi: 10.1016/j.jtbi.2011.09.005.
|
[13]
|
R. C. Connor, M. R. Helthaus and L. M. Barre, Superalliances of bottlenose dolphins, Nature, 397 (1999), 571-572.
|
[14]
|
P. I. M. Dunbar, Neocortex size as a constraint on group size in primates, J.Human Evoluion, 22 (1992), 468-493.
|
[15]
|
C. S. Elton, Animal Ecology, Sidgwick & Jackson, London, 1927.
|
[16]
|
R. A. Fisher, The Genetical Theory of Natural Selection, Clarendon Press, Oxford, 1999.
|
[17]
|
F. Fu, C. Hauert, M. A. Nowak and L. Wang, Reputation-based partner choice promotes cooperation in social networks, Phys. Rev. E, 78 (2008), 026117.
|
[18]
|
S. L. Hakimi, On the realizability of a set of integers as degrees of the vertices of a graph, SIAM J. Appl.Math., 10 (1960), 496-506.
doi: 10.1137/0110037.
|
[19]
|
W. Hamilton, The genetical evolution of social behaviour, Ⅰ, Journal of Theoretical Biology, 7 (1964a), 16pp.
|
[20]
|
W. Hamilton, The genetical evolution of social behaviour, Ⅱ, Journal of Theoretical Biology, 7 (1964b), 52pp.
|
[21]
|
W. D. Hamilton, Extraordinary sex ratios, Science, 156 (1967), 477-488.
|
[22]
|
W. Hässelbarth, Die Verzweightheit von Graphen, Comm. in Math. and Computer Chem. (MATCH), 16 (1984), 3-17.
|
[23]
|
V. Havel, A remark on the existence of finite graphs, Časopis Pěst. Mat., 80 (1955), 477-480.
|
[24]
|
R. A. Hill and R. I. M. Dunbar, Social network size in humans, Human Nature, 1 (2003), 53-72.
|
[25]
|
J. Hofbauer and K. Sigmund,
The Theory of Evolution and Dynamical Systems, Cambridge University Press, 1988.
|
[26]
|
J. Hofbauer and K. Sigmund,
Evolutionary Games and Population Dynamics, Cambridge University Press, 1998.
doi: 10.1017/CBO9781139173179.
|
[27]
|
M. Kimura, "Stepping stone" model of population, Ann. Rep. Nat. Ist. Genet. Mishima, 3 (1953), 63-65.
|
[28]
|
E. Lieberman, C. Hauert and M. A. Nowak, Evolutionary dynamics on graphs, Nature, 433 (2005), 312-316.
|
[29]
|
J. Maynard Smith and G. R. Price, The logic of animal conflict, Nature, 246 (1973), 15-18.
|
[30]
|
J. Maynard Smith, Evolution and the Theory of Games, Cambridge University Press, 1982.
|
[31]
|
B. D. McKay and N. C. Wormald, Uniform generation of random regular graphs of moderate degree, J. Algorithms, 11 (1990), 52-67.
doi: 10.1016/0196-6774(90)90029-E.
|
[32]
|
R. Merris and T. Roby, The lattice of threshold graphs,
J. Inequal. Pure and Appl. Math., 6 (2005), Article 2, 21pp.
|
[33]
|
P. A. P. Moran, The theory of some genetical effects of population subdivision, Aust. J. biol. Sci., 12 (1959), 109-116.
|
[34]
|
R. Noë, Biological markets: Partner choice as the driving force behind the evolution of cooperation. In: Economics in Nature. Social Dilemmas, Mate Choice and Biological Markets, (Ed. by Noë, R., van Hooff, J. A. R. A. M. and Hammerstein, P. ), (2001), 93-118. Cambridge: Cambridge University Press.
|
[35]
|
R. Noë and P. Hammerstein, Biological markets: Supply and demand determine the effect of partner choice in cooperation, Mutualism and Mating Behav.Ecol.Sociobio, 35 (1994), 1-11.
|
[36]
|
J. M. Pacheco, A. Traulsen and M. A. Nowak, Active linking in evolutionary games, J.Theor. Biol., 243 (2006), 437-443.
doi: 10.1016/j.jtbi.2006.06.027.
|
[37]
|
J. M. Pacheco, A. Traulsen and M. A. Nowak, Coevolution of strategy and structure in complex networks with dynamical linking, Phys. Rev. Lett., 97 (2006), 258103.
|
[38]
|
J. Pepper, J. Mitani and D. Watts, General gregariousness and specific social preferences among wild chimpanzees, Int. J. Primatol., 20 (1999), 613-632.
|
[39]
|
M. Perc and A. Szolnoki, Coevolutionarygames -a mini review, BioSystems, 99 (2010), 109-125.
|
[40]
|
H. Richter, Dynamic landscape models of coevolutionary games, 2016, arXiv: 1611.09149v1 [q-bio.PE]
|
[41]
|
E. Ruch and I. Gutman, The branching extent of graphs, J. Combin. Inform. Systems Sci., 4 (1979), 285-295.
|
[42]
|
A. M. Sibbald and R. J. Hooper, Sociability and willingness of individual sheep to move away from their companions in order to graze, Applied Animal Behaviour, 86 (2004), 51-62.
|
[43]
|
B. Skyrms and R. Pemantle, A dynamic modeloof social network formation, Proc. Naatl. Acad. Sci. USA, 97 (2000), 9340-9346.
|
[44]
|
R. Southwell and C. Cannings, Some models of reproducing graphs: Ⅰ pure reproduction, Applied Mathematics, 1 (2010), 137-145.
|
[45]
|
R. Southwell and C. Cannings, Some models of reproducing graphs: Ⅱ age capped, Reproduction Applied Mathematics, 1 (2010), 251-259.
|
[46]
|
R. Southwell and C. Cannings, Some models of reproducing graphs: Ⅲ game based reproduction, Applied Mathematics, 1 (2010), 335-343.
|
[47]
|
G. Szabo and G. Fath, Evolutionary games on graphs, Phys. Rep., 446 (2007), 97-216.
doi: 10.1016/j.physrep.2007.04.004.
|
[48]
|
C. Taylor, D. Fudenberg, A. Sasaki and M. A. Nowak, Evolutionary game dynamics in finite populations, Bulletin of Mathematical Biology, 66 (2004), 1621-1644.
doi: 10.1016/j.bulm.2004.03.004.
|
[49]
|
B. Voelkl and C. Kasper, Social structure of primate interaction networks facilitates the emergence of cooperation, Biology Letters, 5 (2009), 462-464.
|
[50]
|
B. Voelkl and R. Noë, The influence of social structure on the propagation of social information in artificial primate groups: A graph-based simulation approach, Journal of Theoretical Biology, 252 (2008), 77-86.
|
[51]
|
J. Wiszniewski, C. Brown and L. M. Moller, Complex patterns of male alliance formation in dolphin social networks, Journal of Mammalogy, 93 (2012), 239-250.
|
[52]
|
S. Wright, Evolution in Mendelian populations, Genetics, 16 (1931), 97-159.
|
[53]
|
S. Wright, Breeding structure of populations in relation to speciation, Am. Naturalist, 74 (1940), 232-248.
|