Myopic economic agents are well studied in economics. They are impatient. A myopic topology is a topology such that every continuous preference relation is myopic. If the space is $l^{∞}$, the Mackey topology $τ _{M}(l^{∞},l^{1})$, is the largest locally convex such topology. However there is a growing interest in patient consumers. In this paper we analyze the extreme case of consumers who only value the long run. We call such a consumer hyperopic. We define hyperopic preferences and hyperopic topologies. We show the existence of the largest locally convex hyperopic topology, characterize its dual and determine its relationship with the norm dual of $l^{∞}$.
Citation: |
[1] |
C. D. Aliprantis and K. C. Border, Infinite Dimensional Analysis: a Hitchhiker's Guide, Springer-Verlag, New York, 1999.
doi: 10.1007/3-540-29587-9.![]() ![]() ![]() |
[2] |
A. Araujo, R. Novinski and M. R. Pascoa, General equilibrium wariness and efficient bubbles, Journal of Economic Theory, 146 (2011), 785-811.
doi: 10.1016/j.jet.2011.01.005.![]() ![]() ![]() |
[3] |
T. Bewley, Existence of equilibria in economies with infinitely many commodities, Journal of Economic Theory, 4 (1972), 514-540.
doi: 10.1016/0022-0531(72)90136-6.![]() ![]() ![]() |
[4] |
J. Brown and L. M. Lewis, Myopic economic agents, Econometrica, 49 (1981), 359-368.
doi: 10.2307/1913315.![]() ![]() ![]() |
[5] |
Ch. Gilles, Charges as equilibrium prices and asset bubbles, Journal of Mathematical Economics, 18 (1989), 155-167.
doi: 10.1016/0304-4068(89)90019-0.![]() ![]() ![]() |
[6] |
Ch. Gilles and S. F. LeRoy, Bubbles and charges, International Economic Review, 33 (1992), 323-339.
doi: 10.2307/2526897.![]() ![]() |
[7] |
J. Martinez-Legaz, On Weierstrass extreme value theorem, Optimization Letters, 8 (2014), 391-393.
doi: 10.1007/s11590-012-0587-0.![]() ![]() ![]() |
[8] |
L. K. Raut, Myopic topologies on general commodity spaces, Journal of Economic Theory, 39 (1986), 358-367.
doi: 10.1016/0022-0531(86)90050-5.![]() ![]() ![]() |
[9] |
P. Reny, On the existence of pure and mixed strategy Nash equilibria in discontinuous games, Econometrica, 67 (1999), 1029-1056.
doi: 10.1111/1468-0262.00069.![]() ![]() ![]() |
[10] |
H. H. Schaefer,
Topological Vector Spaces, second editon, GTM 3, Springer-Verlag, 1999.
doi: 10.1007/978-1-4612-1468-7.![]() ![]() ![]() |
[11] |
M. Sion, On general minimax theorems, Pacific Journal of Mathematics, 8 (1958), 171-176.
doi: 10.2140/pjm.1958.8.171.![]() ![]() ![]() |
[12] |
J. Werner, Arbitrage, bubbles, and valuation, International Economic Review, 38 (1997), 453-464.
doi: 10.2307/2527383.![]() ![]() |