January  2018, 5(1): 9-20. doi: 10.3934/jdg.2018002

On the linearity property for allocation problems and bankruptcy problems

Facultad de Economía -UASLP; San Luis Potosí, México

* Corresponding address: Facultad de Economía, UASLP; Av. Pintores s/n, Col. B. del Estado 78213, San Luis Potosí, México. Tel. +52 (444) 8342510 Ext. 7023

Received  January 2017 Revised  September 2017 Published  January 2018

This work provides an analysis of linear rules for bankruptcy problems and allocation problems from an axiomatic point of view and we extend the study of the additivity property presented in Bergantiños and Méndez-Naya [1] and Bergantiños and Vidal-Puga [2]. We offer a decomposition for the space of allocation problems into direct sum of subspaces that are relevant to the study of linear rules and obtain characterizations of certain classes of rules. Furthermore, for bankruptcy problems we propose an alternative version of the additivity property.

Citation: Joss Sánchez-Pérez. On the linearity property for allocation problems and bankruptcy problems. Journal of Dynamics & Games, 2018, 5 (1) : 9-20. doi: 10.3934/jdg.2018002
References:
[1]

G. Bergantiños and L. Méndez-Naya, Additivity in bankruptcy problems and in allocation problems, Spanish Economic Review, 3 (2001), 223-229.   Google Scholar

[2]

G. Bergantiños and J. Vidal-Puga, Additive rules in bankruptcy problems and other related problems, Mathematical Social Sciences, 47 (2004), 87-101.  doi: 10.1016/S0165-4896(03)00079-9.  Google Scholar

[3]

C. HerreroM. Maschler and A. Villar, Individual rights and collective responsibility: The rights-egalitarian solution, Mathematical Social Sciences, 37 (1999), 59-77.  doi: 10.1016/S0165-4896(98)00017-1.  Google Scholar

[4]

B. O'Neill, A problem of rights artitration from the Talmud, Mathematical Social Sciences, 2 (1982), 345-371.  doi: 10.1016/0165-4896(82)90029-4.  Google Scholar

[5]

W. Thomson, Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: A survey, Mathematical Social Sciences, 45 (2003), 249-297.  doi: 10.1016/S0165-4896(02)00070-7.  Google Scholar

show all references

References:
[1]

G. Bergantiños and L. Méndez-Naya, Additivity in bankruptcy problems and in allocation problems, Spanish Economic Review, 3 (2001), 223-229.   Google Scholar

[2]

G. Bergantiños and J. Vidal-Puga, Additive rules in bankruptcy problems and other related problems, Mathematical Social Sciences, 47 (2004), 87-101.  doi: 10.1016/S0165-4896(03)00079-9.  Google Scholar

[3]

C. HerreroM. Maschler and A. Villar, Individual rights and collective responsibility: The rights-egalitarian solution, Mathematical Social Sciences, 37 (1999), 59-77.  doi: 10.1016/S0165-4896(98)00017-1.  Google Scholar

[4]

B. O'Neill, A problem of rights artitration from the Talmud, Mathematical Social Sciences, 2 (1982), 345-371.  doi: 10.1016/0165-4896(82)90029-4.  Google Scholar

[5]

W. Thomson, Axiomatic and game-theoretic analysis of bankruptcy and taxation problems: A survey, Mathematical Social Sciences, 45 (2003), 249-297.  doi: 10.1016/S0165-4896(02)00070-7.  Google Scholar

[1]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[2]

Monia Capanna, Jean C. Nakasato, Marcone C. Pereira, Julio D. Rossi. Homogenization for nonlocal problems with smooth kernels. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020385

[3]

Vieri Benci, Sunra Mosconi, Marco Squassina. Preface: Applications of mathematical analysis to problems in theoretical physics. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020446

[4]

François Ledrappier. Three problems solved by Sébastien Gouëzel. Journal of Modern Dynamics, 2020, 16: 373-387. doi: 10.3934/jmd.2020015

[5]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[6]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[7]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[8]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[9]

Yi-Hsuan Lin, Gen Nakamura, Roland Potthast, Haibing Wang. Duality between range and no-response tests and its application for inverse problems. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020072

[10]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[11]

Kha Van Huynh, Barbara Kaltenbacher. Some application examples of minimization based formulations of inverse problems and their regularization. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020074

[12]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[13]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[14]

Bin Wang, Lin Mu. Viscosity robust weak Galerkin finite element methods for Stokes problems. Electronic Research Archive, 2021, 29 (1) : 1881-1895. doi: 10.3934/era.2020096

[15]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[16]

Shuang Liu, Yuan Lou. A functional approach towards eigenvalue problems associated with incompressible flow. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3715-3736. doi: 10.3934/dcds.2020028

[17]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[18]

Olivier Pironneau, Alexei Lozinski, Alain Perronnet, Frédéric Hecht. Numerical zoom for multiscale problems with an application to flows through porous media. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 265-280. doi: 10.3934/dcds.2009.23.265

[19]

Tong Yang, Seiji Ukai, Huijiang Zhao. Stationary solutions to the exterior problems for the Boltzmann equation, I. Existence. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 495-520. doi: 10.3934/dcds.2009.23.495

[20]

Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Fractional optimal control problems on a star graph: Optimality system and numerical solution. Mathematical Control & Related Fields, 2021, 11 (1) : 189-209. doi: 10.3934/mcrf.2020033

 Impact Factor: 

Metrics

  • PDF downloads (89)
  • HTML views (357)
  • Cited by (5)

Other articles
by authors

[Back to Top]