January  2018, 5(1): 31-39. doi: 10.3934/jdg.2018004

A solution for discrete cost sharing problems with non rival consumption

1. 

Universidade de Vigo, Statistics and Operations Research Program; Vigo, Spain

2. 

UASLP, School of Economics; San Luis Potosí, SLP, Mexico

* Corresponding author: adnavarro@uvigo.es

Received  April 2017 Revised  September 2017 Published  January 2018

Fund Project: The authors acknowledge support from CONACyT grant 240229.

In this paper we show several results regarding to the classical cost sharing problem when each agent requires a set of services but they can share the benefits of one unit of each service, i.e. there is non rival consumption. Specifically, we show a characterized solution for this problem, mainly adapting the well-known axioms that characterize the Shapley value for TU-games into our context. Finally, we present some additional properties that the shown solution satisfy.

Citation: Adriana Navarro-Ramos, William Olvera-Lopez. A solution for discrete cost sharing problems with non rival consumption. Journal of Dynamics & Games, 2018, 5 (1) : 31-39. doi: 10.3934/jdg.2018004
References:
[1]

J. Macias-Ponce and W. Olvera-Lopez, A characterization of a solution based on prices for a discrete cost sharing problem, Economics Bulletin, 33 (2013), 1429-1437.   Google Scholar

[2] M. MaschlerE. Solan and S. Zamir, Game Theory, 1 $^{st}$ edition, Cambridge University Press, 2013.  doi: 10.1017/CBO9780511794216.  Google Scholar
[3]

H. Moulin, On additive methods to share joint costs, The Japanese Economic Review, 46 (1995), 303-332.  doi: 10.1111/j.1468-5876.1995.tb00024.x.  Google Scholar

[4]

D. Samet and Y. Tauman, The determination of marginal cost prices under a set of axioms, Econometrica, 50 (1982), 895-909.  doi: 10.2307/1912768.  Google Scholar

[5]

L. S. Shapley, A value for n-person games, in Contributions to the Theory of Games. Annals of Mathematical Studies (eds. Kuhn, H. W. ; Tucker, A. W. ), Princeton University Press, 28 (1953), 307-317.  Google Scholar

[6]

Y. Sprumont, On the discrete version of the Aumann-Shapley cost sharing method, Econometrica, 73 (2005), 1693-1712.  doi: 10.1111/j.1468-0262.2005.00633.x.  Google Scholar

show all references

References:
[1]

J. Macias-Ponce and W. Olvera-Lopez, A characterization of a solution based on prices for a discrete cost sharing problem, Economics Bulletin, 33 (2013), 1429-1437.   Google Scholar

[2] M. MaschlerE. Solan and S. Zamir, Game Theory, 1 $^{st}$ edition, Cambridge University Press, 2013.  doi: 10.1017/CBO9780511794216.  Google Scholar
[3]

H. Moulin, On additive methods to share joint costs, The Japanese Economic Review, 46 (1995), 303-332.  doi: 10.1111/j.1468-5876.1995.tb00024.x.  Google Scholar

[4]

D. Samet and Y. Tauman, The determination of marginal cost prices under a set of axioms, Econometrica, 50 (1982), 895-909.  doi: 10.2307/1912768.  Google Scholar

[5]

L. S. Shapley, A value for n-person games, in Contributions to the Theory of Games. Annals of Mathematical Studies (eds. Kuhn, H. W. ; Tucker, A. W. ), Princeton University Press, 28 (1953), 307-317.  Google Scholar

[6]

Y. Sprumont, On the discrete version of the Aumann-Shapley cost sharing method, Econometrica, 73 (2005), 1693-1712.  doi: 10.1111/j.1468-0262.2005.00633.x.  Google Scholar

[1]

Leon Petrosyan, David Yeung. Shapley value for differential network games: Theory and application. Journal of Dynamics & Games, 2021, 8 (2) : 151-166. doi: 10.3934/jdg.2020021

[2]

Yan-An Hwang, Yu-Hsien Liao. Reduction and dynamic approach for the multi-choice Shapley value. Journal of Industrial & Management Optimization, 2013, 9 (4) : 885-892. doi: 10.3934/jimo.2013.9.885

[3]

Jun Huang, Ying Peng, Ruwen Tan, Chunxiang Guo. Alliance strategy of construction and demolition waste recycling based on the modified shapley value under government regulation. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3183-3207. doi: 10.3934/jimo.2020113

[4]

Xue-Yan Wu, Zhi-Ping Fan, Bing-Bing Cao. Cost-sharing strategy for carbon emission reduction and sales effort: A nash game with government subsidy. Journal of Industrial & Management Optimization, 2020, 16 (4) : 1999-2027. doi: 10.3934/jimo.2019040

[5]

Jiaqin Wei, Danping Li, Yan Zeng. Robust optimal consumption-investment strategy with non-exponential discounting. Journal of Industrial & Management Optimization, 2020, 16 (1) : 207-230. doi: 10.3934/jimo.2018147

[6]

Chandan Pal, Somnath Pradhan. Zero-sum games for pure jump processes with risk-sensitive discounted cost criteria. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021020

[7]

Fabián Crocce, Ernesto Mordecki. A non-iterative algorithm for generalized pig games. Journal of Dynamics & Games, 2018, 5 (4) : 331-341. doi: 10.3934/jdg.2018020

[8]

Andrei Korobeinikov. Global properties of a general predator-prey model with non-symmetric attack and consumption rate. Discrete & Continuous Dynamical Systems - B, 2010, 14 (3) : 1095-1103. doi: 10.3934/dcdsb.2010.14.1095

[9]

Vincent Choudri, Mathiyazhgan Venkatachalam, Sethuraman Panayappan. Production inventory model with deteriorating items, two rates of production cost and taking account of time value of money. Journal of Industrial & Management Optimization, 2016, 12 (3) : 1153-1172. doi: 10.3934/jimo.2016.12.1153

[10]

Zeyang Wang, Ovanes Petrosian. On class of non-transferable utility cooperative differential games with continuous updating. Journal of Dynamics & Games, 2020, 7 (4) : 291-302. doi: 10.3934/jdg.2020020

[11]

Alain Bensoussan, Jens Frehse, Jens Vogelgesang. Systems of Bellman equations to stochastic differential games with non-compact coupling. Discrete & Continuous Dynamical Systems, 2010, 27 (4) : 1375-1389. doi: 10.3934/dcds.2010.27.1375

[12]

Siting Liu, Levon Nurbekyan. Splitting methods for a class of non-potential mean field games. Journal of Dynamics & Games, 2021, 8 (4) : 467-486. doi: 10.3934/jdg.2021014

[13]

Fabien Gensbittel, Miquel Oliu-Barton, Xavier Venel. Existence of the uniform value in zero-sum repeated games with a more informed controller. Journal of Dynamics & Games, 2014, 1 (3) : 411-445. doi: 10.3934/jdg.2014.1.411

[14]

Zuo Quan Xu, Fahuai Yi. An optimal consumption-investment model with constraint on consumption. Mathematical Control & Related Fields, 2016, 6 (3) : 517-534. doi: 10.3934/mcrf.2016014

[15]

Barbara Bianconi, Francesca Papalini. Non-autonomous boundary value problems on the real line. Discrete & Continuous Dynamical Systems, 2006, 15 (3) : 759-776. doi: 10.3934/dcds.2006.15.759

[16]

Corentin Audiard. On the non-homogeneous boundary value problem for Schrödinger equations. Discrete & Continuous Dynamical Systems, 2013, 33 (9) : 3861-3884. doi: 10.3934/dcds.2013.33.3861

[17]

Angelo Favini, Rabah Labbas, Stéphane Maingot, Maëlis Meisner. Boundary value problem for elliptic differential equations in non-commutative cases. Discrete & Continuous Dynamical Systems, 2013, 33 (11&12) : 4967-4990. doi: 10.3934/dcds.2013.33.4967

[18]

Shuhua Zhang, Longzhou Cao, Zuliang Lu. An EOQ inventory model for deteriorating items with controllable deterioration rate under stock-dependent demand rate and non-linear holding cost. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021156

[19]

Cyril Imbert, Sylvia Serfaty. Repeated games for non-linear parabolic integro-differential equations and integral curvature flows. Discrete & Continuous Dynamical Systems, 2011, 29 (4) : 1517-1552. doi: 10.3934/dcds.2011.29.1517

[20]

Max-Olivier Hongler. Mean-field games and swarms dynamics in Gaussian and non-Gaussian environments. Journal of Dynamics & Games, 2020, 7 (1) : 1-20. doi: 10.3934/jdg.2020001

 Impact Factor: 

Metrics

  • PDF downloads (126)
  • HTML views (295)
  • Cited by (3)

Other articles
by authors

[Back to Top]