Advanced Search
Article Contents
Article Contents

A solution for discrete cost sharing problems with non rival consumption

The authors acknowledge support from CONACyT grant 240229.
Abstract Full Text(HTML) Related Papers Cited by
  • In this paper we show several results regarding to the classical cost sharing problem when each agent requires a set of services but they can share the benefits of one unit of each service, i.e. there is non rival consumption. Specifically, we show a characterized solution for this problem, mainly adapting the well-known axioms that characterize the Shapley value for TU-games into our context. Finally, we present some additional properties that the shown solution satisfy.

    Mathematics Subject Classification: Primary: 91A12, 91A40; Secondary: 91A80.


    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] J. Macias-Ponce and W. Olvera-Lopez, A characterization of a solution based on prices for a discrete cost sharing problem, Economics Bulletin, 33 (2013), 1429-1437. 
    [2] M. MaschlerE. Solan and  S. ZamirGame Theory, 1 $^{st}$ edition, Cambridge University Press, 2013.  doi: 10.1017/CBO9780511794216.
    [3] H. Moulin, On additive methods to share joint costs, The Japanese Economic Review, 46 (1995), 303-332.  doi: 10.1111/j.1468-5876.1995.tb00024.x.
    [4] D. Samet and Y. Tauman, The determination of marginal cost prices under a set of axioms, Econometrica, 50 (1982), 895-909.  doi: 10.2307/1912768.
    [5] L. S. Shapley, A value for n-person games, in Contributions to the Theory of Games. Annals of Mathematical Studies (eds. Kuhn, H. W. ; Tucker, A. W. ), Princeton University Press, 28 (1953), 307-317.
    [6] Y. Sprumont, On the discrete version of the Aumann-Shapley cost sharing method, Econometrica, 73 (2005), 1693-1712.  doi: 10.1111/j.1468-0262.2005.00633.x.
  • 加载中

Article Metrics

HTML views(521) PDF downloads(217) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint