January  2018, 5(1): 41-59. doi: 10.3934/jdg.2018005

Transitional dynamics, externalities, optimal subsidy, and growth

Departamento de Economía, Universidad Autónoma Metropolitana-Azcapotzalco, Av. San Pablo 180, Col. Reynosa Tamaulipas, Delegación Azcapotzalco, 02200, Ciudad de México, México

* Corresponding author: Enrique R. Casares

Received  February 2017 Revised  August 2017 Published  January 2018

We develop an endogenous growth model with two sectors, manufacturing (learning) and non-manufacturing (non-learning). Domestic technological knowledge is only produced in the manufacturing sector through learning by doing. The knowledge produced in the manufacturing sector is available to the non-manufacturing sector. We obtain policy functions for the market economy and the social planner's economy. Thus, with the Pareto-optimal solution, we obtain the path of the optimal investment subsidy rate to the manufacturing sector for the market economy. The optimal investment subsidy rate increases as the market economy moves to the Pareto-optimal steady state.

Citation: Enrique R. Casares, Lucia A. Ruiz-Galindo, María Guadalupe García-Salazar. Transitional dynamics, externalities, optimal subsidy, and growth. Journal of Dynamics & Games, 2018, 5 (1) : 41-59. doi: 10.3934/jdg.2018005
References:
[1]

J. Aizenman and J. Lee, Real exchange rate, mercantilism and the learning by doing externality, Nber Working Paper Series, (2008), 1-17.  doi: 10.3386/w13853.  Google Scholar

[2]

K. J. Arrow, The economic implication of learning by doing, Readings in the Theory of Growth, 29 (1962), 131-149.  doi: 10.1007/978-1-349-15430-2_11.  Google Scholar

[3] R. J. Barro and X. Sala-i-Martin, Economic Growth, 2$^{nd}$ edition, Cambridge University Press, 2004.   Google Scholar
[4]

M. Ben-Gad, The two sector endogenous growth model: An atlas, Journal of Macroeconomics, 34 (2012), 706-722.  doi: 10.1016/j.jmacro.2012.03.005.  Google Scholar

[5]

E. W. BondP. Wang and C. K. Yip, A general two-sector model of endogenous growth with human and physical capital: Balanced growth and transitional dynamics, Journal of Economic Theory, 68 (1996), 149-173.  doi: 10.1006/jeth.1996.0008.  Google Scholar

[6]

B. Brou and M. Ruta, A Commitment Theory of Subsidy Agreements, The B. E. Journal of Economic Analysis & Policy, 2013. Available from: http://works.bepress.com/daniel_brou/10/. Google Scholar

[7]

J. Caballe and M. S. Santos, On endogenous growth with physical and human capital, Journal of Political Economy, 101 (1993), 1042-1067.  doi: 10.1086/261914.  Google Scholar

[8]

E. R. Casares and H. Sobarzo, Externalities, Optimal Subsidy and Growth, in Trends in Mathematical Economics. Dialogues Between Southern Europe and Latin America (eds. A. A. Pinto, E. Accinelli G., A. N. Yannacopulos and C. Hervés-Belo), Springer, (2016), 53-71.  Google Scholar

[9]

S. Clemhout and H. Y. Wan, Learning-by-doing and infant industry protection, Review of Economic Studies, 37 (1970), 33-56.  doi: 10.2307/2296497.  Google Scholar

[10]

M. Dotsey and M. Duarte, Non traded goods, market segmentation, and exchange rates, Journal of Monetary Economics, 55 (2008), 1129-1142.   Google Scholar

[11]

F. A. R. Gomes and L. S. Paz, Estimating the elasticity of intertemporal substitution: Is the aggregate financial return free from the weak instrument problem?, Journal of Macroeconomics, 36 (2013), 63-75.  doi: 10.1016/j.jmacro.2013.01.005.  Google Scholar

[12]

J. Gruber, A tax-based estimate of the elasticity of intertemporal substitution, Nber Working Paper Series, 11945 (2006), 1-31.  doi: 10.3386/w11945.  Google Scholar

[13]

R. E. Hall, Intertemporal substitution in consumption, Journal of Political Economy, 96 (1988), 339-357.   Google Scholar

[14]

C. Hsieh and P. J. Klenow, Relative prices and relative prosperity, American Economic Review, 97 (2007), 562-585.   Google Scholar

[15]

C. Jones, Economic growth and the relative price of capital, Journal of Monetary Economics, 34 (1994), 359-382.  doi: 10.1016/0304-3932(94)90024-8.  Google Scholar

[16]

A. Korinek and L. Serven, Undervaluation through foreign reserve accumulation: Static losses, dynamic gains, Journal of International Money and Finance, 64 (2016), 104-136.  doi: 10.1596/1813-9450-5250.  Google Scholar

[17]

R. E. Lucas, On the mechanics of economic development, Journal of Monetary Economics, 22 (1988), 3-42.   Google Scholar

[18]

K. Matsuyama, Agricultural productivity, comparative advantage, and economic growth, Nber Working Paper Series, 3606 (1991), 1-27.  doi: 10.3386/w3606.  Google Scholar

[19] K. Mino, Growth and Business Cycles with Equilibrium Indeterminacy, 1$^{st}$ edition, Springer, 2017.  doi: 10.1007/978-4-431-55609-1.  Google Scholar
[20]

A. K. M. M. Morshed and S. J. Turnovsky, Sectoral adjustment costs and real exchange rate dynamics in a two-sector dependent economy, Journal of International Economics, 63 (2004), 147-177.  doi: 10.1016/S0022-1996(03)00038-2.  Google Scholar

[21]

C. B. Mulligan and X. Sala-i-Martin, A note on the time-elimination method for solving recursive dynamic economic models, NBER, Technical Working Paper, 116 (1991), 1-28.  doi: 10.3386/t0116.  Google Scholar

[22]

C. B. Mulligan and X. Sala-I-Martin, Transitional dynamics in two-sector models of endogenous growth, Nber Working Papers Series, 3986 (1992), 1-73.  doi: 10.3386/w3986.  Google Scholar

[23]

D. Restuccia and C. Urrutia, Relative prices and investment rates, Journal of Monetary Economics, 47 (2001), 93-121.  doi: 10.1016/S0304-3932(00)00049-0.  Google Scholar

[24] T. L. RoeR. B. W. Smith and D. S. Saracoǧlu, Multisector Growth Models, Springer, 2010.  doi: 10.1007/978-0-387-77358-2.  Google Scholar
[25]

P. M. Romer, Increasing returns and long-run growth, Journal of Political Economy, 94 (1986), 1002-1037.  doi: 10.1086/261420.  Google Scholar

[26]

P. M. Romer, Capital Accumulation in the Theory of Long Run Growth, Modern Business Cycle Theory (Ed. R. Barro), Basil Blackwell, 1989. Google Scholar

[27]

P. Succar, The need for industrial policy in LDC's: A restatement of the infant industry argument, International Economic Review, 28 (1987), 521-534.   Google Scholar

[28] S. J. Turnovsky, International Macroeconomic Dynamics, MIT Press, 1997.   Google Scholar
[29] S. J. Turnovsky, Capital Accumulation and Economic Growth in a Small Open Economy, Cambridge University Press, 2009.   Google Scholar
[30]

A. Valentinyi and B. Herrendorf, Measuring factor income shares at the sectoral level, Review of Economic Dynamics, 11 (2008), 820-835.  doi: 10.1016/j.red.2008.02.003.  Google Scholar

[31]

D. Xie, Divergence in economic performance: Transitional dynamics with multiple equilibria, Journal of Economic Theory, 63 (1994), 97-112.  doi: 10.1006/jeth.1994.1034.  Google Scholar

[32]

M. Yogo, Estimating the elasticity of intertemporal substitution when instruments are weak, Review of Economics and Statistics, 86 (2004), 797-810.  doi: 10.1162/0034653041811770.  Google Scholar

[33]

A. Young, Learning by doing and the dynamic effects of international trade, Nber Working Papers Series, 3677 (1991), 1-49.  doi: 10.3386/w3577.  Google Scholar

show all references

References:
[1]

J. Aizenman and J. Lee, Real exchange rate, mercantilism and the learning by doing externality, Nber Working Paper Series, (2008), 1-17.  doi: 10.3386/w13853.  Google Scholar

[2]

K. J. Arrow, The economic implication of learning by doing, Readings in the Theory of Growth, 29 (1962), 131-149.  doi: 10.1007/978-1-349-15430-2_11.  Google Scholar

[3] R. J. Barro and X. Sala-i-Martin, Economic Growth, 2$^{nd}$ edition, Cambridge University Press, 2004.   Google Scholar
[4]

M. Ben-Gad, The two sector endogenous growth model: An atlas, Journal of Macroeconomics, 34 (2012), 706-722.  doi: 10.1016/j.jmacro.2012.03.005.  Google Scholar

[5]

E. W. BondP. Wang and C. K. Yip, A general two-sector model of endogenous growth with human and physical capital: Balanced growth and transitional dynamics, Journal of Economic Theory, 68 (1996), 149-173.  doi: 10.1006/jeth.1996.0008.  Google Scholar

[6]

B. Brou and M. Ruta, A Commitment Theory of Subsidy Agreements, The B. E. Journal of Economic Analysis & Policy, 2013. Available from: http://works.bepress.com/daniel_brou/10/. Google Scholar

[7]

J. Caballe and M. S. Santos, On endogenous growth with physical and human capital, Journal of Political Economy, 101 (1993), 1042-1067.  doi: 10.1086/261914.  Google Scholar

[8]

E. R. Casares and H. Sobarzo, Externalities, Optimal Subsidy and Growth, in Trends in Mathematical Economics. Dialogues Between Southern Europe and Latin America (eds. A. A. Pinto, E. Accinelli G., A. N. Yannacopulos and C. Hervés-Belo), Springer, (2016), 53-71.  Google Scholar

[9]

S. Clemhout and H. Y. Wan, Learning-by-doing and infant industry protection, Review of Economic Studies, 37 (1970), 33-56.  doi: 10.2307/2296497.  Google Scholar

[10]

M. Dotsey and M. Duarte, Non traded goods, market segmentation, and exchange rates, Journal of Monetary Economics, 55 (2008), 1129-1142.   Google Scholar

[11]

F. A. R. Gomes and L. S. Paz, Estimating the elasticity of intertemporal substitution: Is the aggregate financial return free from the weak instrument problem?, Journal of Macroeconomics, 36 (2013), 63-75.  doi: 10.1016/j.jmacro.2013.01.005.  Google Scholar

[12]

J. Gruber, A tax-based estimate of the elasticity of intertemporal substitution, Nber Working Paper Series, 11945 (2006), 1-31.  doi: 10.3386/w11945.  Google Scholar

[13]

R. E. Hall, Intertemporal substitution in consumption, Journal of Political Economy, 96 (1988), 339-357.   Google Scholar

[14]

C. Hsieh and P. J. Klenow, Relative prices and relative prosperity, American Economic Review, 97 (2007), 562-585.   Google Scholar

[15]

C. Jones, Economic growth and the relative price of capital, Journal of Monetary Economics, 34 (1994), 359-382.  doi: 10.1016/0304-3932(94)90024-8.  Google Scholar

[16]

A. Korinek and L. Serven, Undervaluation through foreign reserve accumulation: Static losses, dynamic gains, Journal of International Money and Finance, 64 (2016), 104-136.  doi: 10.1596/1813-9450-5250.  Google Scholar

[17]

R. E. Lucas, On the mechanics of economic development, Journal of Monetary Economics, 22 (1988), 3-42.   Google Scholar

[18]

K. Matsuyama, Agricultural productivity, comparative advantage, and economic growth, Nber Working Paper Series, 3606 (1991), 1-27.  doi: 10.3386/w3606.  Google Scholar

[19] K. Mino, Growth and Business Cycles with Equilibrium Indeterminacy, 1$^{st}$ edition, Springer, 2017.  doi: 10.1007/978-4-431-55609-1.  Google Scholar
[20]

A. K. M. M. Morshed and S. J. Turnovsky, Sectoral adjustment costs and real exchange rate dynamics in a two-sector dependent economy, Journal of International Economics, 63 (2004), 147-177.  doi: 10.1016/S0022-1996(03)00038-2.  Google Scholar

[21]

C. B. Mulligan and X. Sala-i-Martin, A note on the time-elimination method for solving recursive dynamic economic models, NBER, Technical Working Paper, 116 (1991), 1-28.  doi: 10.3386/t0116.  Google Scholar

[22]

C. B. Mulligan and X. Sala-I-Martin, Transitional dynamics in two-sector models of endogenous growth, Nber Working Papers Series, 3986 (1992), 1-73.  doi: 10.3386/w3986.  Google Scholar

[23]

D. Restuccia and C. Urrutia, Relative prices and investment rates, Journal of Monetary Economics, 47 (2001), 93-121.  doi: 10.1016/S0304-3932(00)00049-0.  Google Scholar

[24] T. L. RoeR. B. W. Smith and D. S. Saracoǧlu, Multisector Growth Models, Springer, 2010.  doi: 10.1007/978-0-387-77358-2.  Google Scholar
[25]

P. M. Romer, Increasing returns and long-run growth, Journal of Political Economy, 94 (1986), 1002-1037.  doi: 10.1086/261420.  Google Scholar

[26]

P. M. Romer, Capital Accumulation in the Theory of Long Run Growth, Modern Business Cycle Theory (Ed. R. Barro), Basil Blackwell, 1989. Google Scholar

[27]

P. Succar, The need for industrial policy in LDC's: A restatement of the infant industry argument, International Economic Review, 28 (1987), 521-534.   Google Scholar

[28] S. J. Turnovsky, International Macroeconomic Dynamics, MIT Press, 1997.   Google Scholar
[29] S. J. Turnovsky, Capital Accumulation and Economic Growth in a Small Open Economy, Cambridge University Press, 2009.   Google Scholar
[30]

A. Valentinyi and B. Herrendorf, Measuring factor income shares at the sectoral level, Review of Economic Dynamics, 11 (2008), 820-835.  doi: 10.1016/j.red.2008.02.003.  Google Scholar

[31]

D. Xie, Divergence in economic performance: Transitional dynamics with multiple equilibria, Journal of Economic Theory, 63 (1994), 97-112.  doi: 10.1006/jeth.1994.1034.  Google Scholar

[32]

M. Yogo, Estimating the elasticity of intertemporal substitution when instruments are weak, Review of Economics and Statistics, 86 (2004), 797-810.  doi: 10.1162/0034653041811770.  Google Scholar

[33]

A. Young, Learning by doing and the dynamic effects of international trade, Nber Working Papers Series, 3677 (1991), 1-49.  doi: 10.3386/w3577.  Google Scholar

Figure 1.  The policy function $n=n(z)$, market economy with $\mu=0$.
Figure 2.  The policy function $v=v(z)$, market economy with $\mu=0$.
Figure 3.  The policy function $n=n(z)$, social planner's economy.
Figure 4.  The policy function $v=v(z)$, social planner's economy.
Figure 5.  The path of the optimal subsidy rate $\mu$.
Figure 6.  Transitional dynamics of $n$ and $z$.
Figure 7.  Transitional dynamics of $v$ and $z$.
[1]

Haili Yuan, Yijun Hu. Optimal investment for an insurer under liquid reserves. Journal of Industrial & Management Optimization, 2021, 17 (1) : 339-355. doi: 10.3934/jimo.2019114

[2]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[3]

Ebraheem O. Alzahrani, Muhammad Altaf Khan. Androgen driven evolutionary population dynamics in prostate cancer growth. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020426

[4]

Laurence Cherfils, Stefania Gatti, Alain Miranville, Rémy Guillevin. Analysis of a model for tumor growth and lactate exchanges in a glioma. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020457

[5]

Shuai Huang, Zhi-Ping Fan, Xiaohuan Wang. Optimal financing and operational decisions of capital-constrained manufacturer under green credit and subsidy. Journal of Industrial & Management Optimization, 2021, 17 (1) : 261-277. doi: 10.3934/jimo.2019110

[6]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[7]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[8]

Weiwei Liu, Jinliang Wang, Yuming Chen. Threshold dynamics of a delayed nonlocal reaction-diffusion cholera model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020316

[9]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[10]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[11]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[12]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

[13]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[14]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[15]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[16]

Emre Esentürk, Juan Velazquez. Large time behavior of exchange-driven growth. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 747-775. doi: 10.3934/dcds.2020299

[17]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[18]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[19]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[20]

José Madrid, João P. G. Ramos. On optimal autocorrelation inequalities on the real line. Communications on Pure & Applied Analysis, 2021, 20 (1) : 369-388. doi: 10.3934/cpaa.2020271

 Impact Factor: 

Metrics

  • PDF downloads (79)
  • HTML views (468)
  • Cited by (3)

[Back to Top]