April  2018, 5(2): 61-94. doi: 10.3934/jdg.2018006

Robust portfolio decisions for financial institutions

1. 

Department of Financial and Management Engineering, University of the Aegean, 41 Kountouriotou Street, GR-82100, Chios, Greece

2. 

Department of International and European Economic Studies, Athens University of Economics and Business, 76 Patission Street, GR-10434, Athens, Greece

3. 

Department of Statistics & Laboratory of Stochastic Modeling and Applications, Athens University of Economics and Business, 76 Patission Street, GR-10434, Athens, Greece

The authors would like to thank the editor and the two anonymous referees for their careful reading and helpful comments.

Received  September 2017 Revised  December 2017 Published  February 2018

The present paper aims to study a robust-entropic optimal control problem arising in the management of financial institutions. More precisely, we consider an economic agent who manages the portfolio of a financial firm. The manager has the possibility to invest part of the firm's wealth in a classical Black-Scholes type financial market, and also, as the firm is exposed to a stochastic cash flow of liabilities, to proportionally transfer part of its liabilities to a third party as a means of reducing risk. However, model uncertainty aspects are introduced as the manager does not fully trust the model she faces, hence she decides to make her decision robust. By employing robust control and dynamic programming techniques, we provide closed form solutions for the cases of the (ⅰ) logarithmic; (ⅱ) exponential and (ⅲ) power utility functions. Moreover, we provide a detailed study of the limiting behavior, of the associated stochastic differential game at hand, which, in a special case, leads to break down of the solution of the resulting Hamilton-Jacobi-Bellman-Isaacs equation. Finally, we present a detailed numerical study that elucidates the effect of robustness on the optimal decisions of both players.

Citation: Ioannis Baltas, Anastasios Xepapadeas, Athanasios N. Yannacopoulos. Robust portfolio decisions for financial institutions. Journal of Dynamics & Games, 2018, 5 (2) : 61-94. doi: 10.3934/jdg.2018006
References:
[1]

E. AndersonL. Hansen and T. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, Journal of the European Economic Association, 1 (2003), 68-123.   Google Scholar

[2]

E. AndersonE. Ghysels and J. Juergens, The impact of risk and uncertainty on expected returns, Journal of Financial Economics, 94 (2009), 233-263.  doi: 10.1016/j.jfineco.2008.11.001.  Google Scholar

[3]

L. Bai and G. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint, Insurance: Mathematics and Economics, 42 (2008), 968-975.  doi: 10.1016/j.insmatheco.2007.11.002.  Google Scholar

[4]

I. D. BaltasN. E. Frangos and A. N. Yannacopoulos, Optimal investment and reinsurance policies in insurance markets under the effect of inside information, Applied Stochastic Models in Business and Industry, 28 (2012), 506-528.  doi: 10.1002/asmb.925.  Google Scholar

[5]

I. D. Baltas and A. N. Yannacopoulos, Uncertainty and inside information, Journal of Dynamics and Games, 3 (2016), 1-24.  doi: 10.3934/jdg.2016001.  Google Scholar

[6]

E. Bayraktar and S. Yao, Doubly reflected BSDEs with integrable parameters and related Dynkin games, Stochastic Processes and their Applications, 125 (2015), 4489-4542.  doi: 10.1016/j.spa.2015.07.007.  Google Scholar

[7]

S. Biagini and M. Pinar, The Robust Merton Problem of an Ambiguity-Averse Investor, Mathematics and Financial Economics, 11 (2017), 1-24.  doi: 10.1007/s11579-016-0168-6.  Google Scholar

[8]

N. BrangerL. Larsen and C. Munk, Robust portfolio choice with ambiguity and learning predictability, Journal of Banking and Finance, 37 (2013), 1397-1411.  doi: 10.2139/ssrn.1859916.  Google Scholar

[9]

W. A. BrockA. Xepapadeas and A. N. Yannacopoulos, Robust control and hot spots in spatiotemporal economic systems, Dyn. Games Appl., 4 (2014), 257-289.  doi: 10.1007/s13235-014-0109-z.  Google Scholar

[10]

W. A. Brock, A. Xepapadeas and A. N. Yannacopoulos, Robust control of a spatially distributed commercial fishery, in Dynamic Optimization in Environmental Economics, (eds. E. Moser, W. Semmler, G. Tragler, V. Veliov), Springer-Verlag, Heidelberg, 15 (2014), 215-241. doi: 10.1007/978-3-642-54086-8_10.  Google Scholar

[11]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 20 (1995), 937-958.  doi: 10.1287/moor.20.4.937.  Google Scholar

[12]

R. Buckdahn and J. Li, Stochastic differential games with reflection and related obstacle problems for Isaacs equations, Acta Mathematicae Applicatae Sinica, English Series, 27 (2011), 647-678.  doi: 10.1007/s10255-011-0068-8.  Google Scholar

[13]

R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations, SIAM Journal on Control and Optimization, 47 (2008), 444-475.  doi: 10.1137/060671954.  Google Scholar

[14]

A. Cairns, A discussion of parameter and model uncertainty in insurance, Insurance: Mathematics and Economics, 27 (2000), 313-330.  doi: 10.1016/S0167-6687(00)00055-X.  Google Scholar

[15]

R. Cont, Model uncertainty and its impact on the pricing of derivative instruments, Mathematical Finance, 16 (2004), 519-547.  doi: 10.1111/j.1467-9965.2006.00281.x.  Google Scholar

[16]

M. G. CrandallH. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[17]

W. Fleming and P. Souganidis, On the existence of value functions of two player zero sum stochastic differential games, Indiana University Mathematics Journal, 38 (1989), 293-314.  doi: 10.1512/iumj.1989.38.38015.  Google Scholar

[18]

C. Flor and L. Larsen, Robust portfolio choice with stochastic interest rates, Annals of Finance, 10 (2014), 243-265.  doi: 10.1007/s10436-013-0234-5.  Google Scholar

[19]

I. Girsanov, On transforming a certain class of stochastic processes by absolutely continuous substitution of measures, (Russian)Teor. Verojatnost. i Primenen., 5 (1960), 314–330. doi: 10.1137/1105027.  Google Scholar

[20]

L. Hansen and T. Sargent, Robust control and model uncertainty, Uncertainty within Economic Models, 6 (2014), 145-154. Available from: http://www.jstor.org/stable/2677734 doi: 10.1142/9789814578127_0005.  Google Scholar

[21]

R. Isaacs, Differential Games, Dover, 1999. Google Scholar

[22]

R. Korn, Worst case scenario investment for insurers, Insurance: Mathematics and economics, 36 (2005), 1-11.  doi: 10.1016/j.insmatheco.2004.10.004.  Google Scholar

[23]

A. Lioui and P. Pocet, On model ambiguity and money neutrality, Journal of Macroeconomics, 34 (2012), 1020-1033.  doi: 10.1016/j.jmacro.2012.08.003.  Google Scholar

[24]

H. Liu, Robust consumption and portfolio choice for time varying investment, Annals of Finance, 6 (2010), 435-454.  doi: 10.1007/s10436-010-0164-4.  Google Scholar

[25]

P. Maenhout, Robust portfolio rules and asset pricing, The Review of Financial Studies, 17 (2004), 951-983.  doi: 10.1093/rfs/hhh003.  Google Scholar

[26]

S. Mataramvura and B. Øksendal, Risk minimizing portfolios and HJBI equations for stochastic differential games, Stochastics: An International Journal of Probability and Stochastic Processes, 80 (2008), 317-337.  doi: 10.1080/17442500701655408.  Google Scholar

[27]

C. McMillan and R. Triggiani, Min-Max Game Theory and Algebraic Riccati Equations for Boundary Control Problems with Continuous Input-Solution Map. Part Ⅱ: the General Case, Appl Math Optim, 29 (1994), 1-65.  doi: 10.1007/BF01191106.  Google Scholar

[28]

R. Merton, Lifetime portfolio selection under uncertainty: The continuous case, Rev. Econ. Stat., 51 (1969), 247-257.  doi: 10.2307/1926560.  Google Scholar

[29]

H. Nikaidô, On Von Neumann's minimax theorem, Pacific Journal of Mathematics, 4 (1954), 65-72.  doi: 10.2140/pjm.1954.4.65.  Google Scholar

[30]

M. Nisio, Stochastic differential games and viscosity solutions of Isaacs equations, Nagoya Mathematical Journal, 110 (1988), 163-184.  doi: 10.1017/S0027763000002932.  Google Scholar

[31]

A. A. Novikov, On conditions for uniform integrability for continuous exponential martingales, Stochastic Differential Systems, Proc. IFIP-WG 7/1 Work. Conf., Vilnius/Lith. 1978, Lect. Notes Control Inf. Sci., 25 (1980), 304-310.  doi: 10.1093/rfs/hhh003.  Google Scholar

[32]

M. Pinar, On Robust Mean-Variance Portfolios, Optimization, 65 (2016), 1039-1048.  doi: 10.1080/02331934.2015.1132216.  Google Scholar

[33]

S. D. Promislow and V. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift, North American Actuarial Journal, 9 (2005), 109-128.  doi: 10.1080/10920277.2005.10596214.  Google Scholar

[34]

U. Rieder and C. Wopperer, Robust consumption-investment problems with random market coefficients, Math Finan Econ, 6 (2012), 295-311.  doi: 10.1007/s11579-012-0073-6.  Google Scholar

[35]

H. Schmidli, Diffusion approximations for a risk process with the possibility of borrowing and investment, Communications in Statistics, Stochastic Models, 10 (1994), 365-388.  doi: 10.1080/15326349408807300.  Google Scholar

[36]

M. Sion, On general minimax theorems, Pacific Journal of Mathematics, 8 (1958), 171-176.  doi: 10.2140/pjm.1958.8.171.  Google Scholar

[37]

C. Skiadas, Robust control and recursive utility, Finance and Stochastics, 7 (2003), 475-489.  doi: 10.1007/s007800300100.  Google Scholar

[38]

R. Uppal and T. Wang, Model misspecification and underdiversification, The Journal of Finance, 58 (2003), 2465-2486.  doi: 10.1046/j.1540-6261.2003.00612.x.  Google Scholar

[39]

H. Wang and S. Hou, Robust consumption and portfolio choice with habit formation, the spirit of capitalism and recursive utility, Annals of Economics and Finance, 16 (2015), 393-416.   Google Scholar

[40]

D. Zawisza, Robust portfolio selection under exponential preferences, Applicationes Mathematicae, 37 (2010), 215-230.  doi: 10.4064/am37-2-6.  Google Scholar

[41]

D. Zawisza, Robust consumption-investment problem on infinite horizon, Appl. Math. Optim, 72 (2015), 469-491.  doi: 10.1007/s00245-014-9287-8.  Google Scholar

show all references

References:
[1]

E. AndersonL. Hansen and T. Sargent, A quartet of semigroups for model specification, robustness, prices of risk, and model detection, Journal of the European Economic Association, 1 (2003), 68-123.   Google Scholar

[2]

E. AndersonE. Ghysels and J. Juergens, The impact of risk and uncertainty on expected returns, Journal of Financial Economics, 94 (2009), 233-263.  doi: 10.1016/j.jfineco.2008.11.001.  Google Scholar

[3]

L. Bai and G. Guo, Optimal proportional reinsurance and investment with multiple risky assets and no-shorting constraint, Insurance: Mathematics and Economics, 42 (2008), 968-975.  doi: 10.1016/j.insmatheco.2007.11.002.  Google Scholar

[4]

I. D. BaltasN. E. Frangos and A. N. Yannacopoulos, Optimal investment and reinsurance policies in insurance markets under the effect of inside information, Applied Stochastic Models in Business and Industry, 28 (2012), 506-528.  doi: 10.1002/asmb.925.  Google Scholar

[5]

I. D. Baltas and A. N. Yannacopoulos, Uncertainty and inside information, Journal of Dynamics and Games, 3 (2016), 1-24.  doi: 10.3934/jdg.2016001.  Google Scholar

[6]

E. Bayraktar and S. Yao, Doubly reflected BSDEs with integrable parameters and related Dynkin games, Stochastic Processes and their Applications, 125 (2015), 4489-4542.  doi: 10.1016/j.spa.2015.07.007.  Google Scholar

[7]

S. Biagini and M. Pinar, The Robust Merton Problem of an Ambiguity-Averse Investor, Mathematics and Financial Economics, 11 (2017), 1-24.  doi: 10.1007/s11579-016-0168-6.  Google Scholar

[8]

N. BrangerL. Larsen and C. Munk, Robust portfolio choice with ambiguity and learning predictability, Journal of Banking and Finance, 37 (2013), 1397-1411.  doi: 10.2139/ssrn.1859916.  Google Scholar

[9]

W. A. BrockA. Xepapadeas and A. N. Yannacopoulos, Robust control and hot spots in spatiotemporal economic systems, Dyn. Games Appl., 4 (2014), 257-289.  doi: 10.1007/s13235-014-0109-z.  Google Scholar

[10]

W. A. Brock, A. Xepapadeas and A. N. Yannacopoulos, Robust control of a spatially distributed commercial fishery, in Dynamic Optimization in Environmental Economics, (eds. E. Moser, W. Semmler, G. Tragler, V. Veliov), Springer-Verlag, Heidelberg, 15 (2014), 215-241. doi: 10.1007/978-3-642-54086-8_10.  Google Scholar

[11]

S. Browne, Optimal investment policies for a firm with a random risk process: Exponential utility and minimizing the probability of ruin, Mathematics of Operations Research, 20 (1995), 937-958.  doi: 10.1287/moor.20.4.937.  Google Scholar

[12]

R. Buckdahn and J. Li, Stochastic differential games with reflection and related obstacle problems for Isaacs equations, Acta Mathematicae Applicatae Sinica, English Series, 27 (2011), 647-678.  doi: 10.1007/s10255-011-0068-8.  Google Scholar

[13]

R. Buckdahn and J. Li, Stochastic differential games and viscosity solutions of Hamilton-Jacobi-Bellman-Isaacs equations, SIAM Journal on Control and Optimization, 47 (2008), 444-475.  doi: 10.1137/060671954.  Google Scholar

[14]

A. Cairns, A discussion of parameter and model uncertainty in insurance, Insurance: Mathematics and Economics, 27 (2000), 313-330.  doi: 10.1016/S0167-6687(00)00055-X.  Google Scholar

[15]

R. Cont, Model uncertainty and its impact on the pricing of derivative instruments, Mathematical Finance, 16 (2004), 519-547.  doi: 10.1111/j.1467-9965.2006.00281.x.  Google Scholar

[16]

M. G. CrandallH. Ishii and P.-L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67.  doi: 10.1090/S0273-0979-1992-00266-5.  Google Scholar

[17]

W. Fleming and P. Souganidis, On the existence of value functions of two player zero sum stochastic differential games, Indiana University Mathematics Journal, 38 (1989), 293-314.  doi: 10.1512/iumj.1989.38.38015.  Google Scholar

[18]

C. Flor and L. Larsen, Robust portfolio choice with stochastic interest rates, Annals of Finance, 10 (2014), 243-265.  doi: 10.1007/s10436-013-0234-5.  Google Scholar

[19]

I. Girsanov, On transforming a certain class of stochastic processes by absolutely continuous substitution of measures, (Russian)Teor. Verojatnost. i Primenen., 5 (1960), 314–330. doi: 10.1137/1105027.  Google Scholar

[20]

L. Hansen and T. Sargent, Robust control and model uncertainty, Uncertainty within Economic Models, 6 (2014), 145-154. Available from: http://www.jstor.org/stable/2677734 doi: 10.1142/9789814578127_0005.  Google Scholar

[21]

R. Isaacs, Differential Games, Dover, 1999. Google Scholar

[22]

R. Korn, Worst case scenario investment for insurers, Insurance: Mathematics and economics, 36 (2005), 1-11.  doi: 10.1016/j.insmatheco.2004.10.004.  Google Scholar

[23]

A. Lioui and P. Pocet, On model ambiguity and money neutrality, Journal of Macroeconomics, 34 (2012), 1020-1033.  doi: 10.1016/j.jmacro.2012.08.003.  Google Scholar

[24]

H. Liu, Robust consumption and portfolio choice for time varying investment, Annals of Finance, 6 (2010), 435-454.  doi: 10.1007/s10436-010-0164-4.  Google Scholar

[25]

P. Maenhout, Robust portfolio rules and asset pricing, The Review of Financial Studies, 17 (2004), 951-983.  doi: 10.1093/rfs/hhh003.  Google Scholar

[26]

S. Mataramvura and B. Øksendal, Risk minimizing portfolios and HJBI equations for stochastic differential games, Stochastics: An International Journal of Probability and Stochastic Processes, 80 (2008), 317-337.  doi: 10.1080/17442500701655408.  Google Scholar

[27]

C. McMillan and R. Triggiani, Min-Max Game Theory and Algebraic Riccati Equations for Boundary Control Problems with Continuous Input-Solution Map. Part Ⅱ: the General Case, Appl Math Optim, 29 (1994), 1-65.  doi: 10.1007/BF01191106.  Google Scholar

[28]

R. Merton, Lifetime portfolio selection under uncertainty: The continuous case, Rev. Econ. Stat., 51 (1969), 247-257.  doi: 10.2307/1926560.  Google Scholar

[29]

H. Nikaidô, On Von Neumann's minimax theorem, Pacific Journal of Mathematics, 4 (1954), 65-72.  doi: 10.2140/pjm.1954.4.65.  Google Scholar

[30]

M. Nisio, Stochastic differential games and viscosity solutions of Isaacs equations, Nagoya Mathematical Journal, 110 (1988), 163-184.  doi: 10.1017/S0027763000002932.  Google Scholar

[31]

A. A. Novikov, On conditions for uniform integrability for continuous exponential martingales, Stochastic Differential Systems, Proc. IFIP-WG 7/1 Work. Conf., Vilnius/Lith. 1978, Lect. Notes Control Inf. Sci., 25 (1980), 304-310.  doi: 10.1093/rfs/hhh003.  Google Scholar

[32]

M. Pinar, On Robust Mean-Variance Portfolios, Optimization, 65 (2016), 1039-1048.  doi: 10.1080/02331934.2015.1132216.  Google Scholar

[33]

S. D. Promislow and V. Young, Minimizing the probability of ruin when claims follow Brownian motion with drift, North American Actuarial Journal, 9 (2005), 109-128.  doi: 10.1080/10920277.2005.10596214.  Google Scholar

[34]

U. Rieder and C. Wopperer, Robust consumption-investment problems with random market coefficients, Math Finan Econ, 6 (2012), 295-311.  doi: 10.1007/s11579-012-0073-6.  Google Scholar

[35]

H. Schmidli, Diffusion approximations for a risk process with the possibility of borrowing and investment, Communications in Statistics, Stochastic Models, 10 (1994), 365-388.  doi: 10.1080/15326349408807300.  Google Scholar

[36]

M. Sion, On general minimax theorems, Pacific Journal of Mathematics, 8 (1958), 171-176.  doi: 10.2140/pjm.1958.8.171.  Google Scholar

[37]

C. Skiadas, Robust control and recursive utility, Finance and Stochastics, 7 (2003), 475-489.  doi: 10.1007/s007800300100.  Google Scholar

[38]

R. Uppal and T. Wang, Model misspecification and underdiversification, The Journal of Finance, 58 (2003), 2465-2486.  doi: 10.1046/j.1540-6261.2003.00612.x.  Google Scholar

[39]

H. Wang and S. Hou, Robust consumption and portfolio choice with habit formation, the spirit of capitalism and recursive utility, Annals of Economics and Finance, 16 (2015), 393-416.   Google Scholar

[40]

D. Zawisza, Robust portfolio selection under exponential preferences, Applicationes Mathematicae, 37 (2010), 215-230.  doi: 10.4064/am37-2-6.  Google Scholar

[41]

D. Zawisza, Robust consumption-investment problem on infinite horizon, Appl. Math. Optim, 72 (2015), 469-491.  doi: 10.1007/s00245-014-9287-8.  Google Scholar

Figure 1.  Average of 6000 optimal investment strategy paths for various levels of the preference for the robustness parameter, in the case of the exponential utility function.
Figure 3.  Average of 6000 optimal coverage strategy paths for various levels for the preference for the robustness parameter, in the case of the exponential utility function.
Figure 2.  Average of 6000 optimal investment strategy paths for various levels of the initial wealth, in the case of the exponential utility function, with robustness.
Figure 4.  Average of 6000 optimal worst-case strategy paths for various levels for the preference for the robustness parameter, in the case of the exponential utility function.
[1]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[2]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[3]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[4]

Tetsuya Ishiwata, Young Chol Yang. Numerical and mathematical analysis of blow-up problems for a stochastic differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 909-918. doi: 10.3934/dcdss.2020391

[5]

Bing Liu, Ming Zhou. Robust portfolio selection for individuals: Minimizing the probability of lifetime ruin. Journal of Industrial & Management Optimization, 2021, 17 (2) : 937-952. doi: 10.3934/jimo.2020005

[6]

Lin Jiang, Song Wang. Robust multi-period and multi-objective portfolio selection. Journal of Industrial & Management Optimization, 2021, 17 (2) : 695-709. doi: 10.3934/jimo.2019130

[7]

David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121

[8]

Junkee Jeon. Finite horizon portfolio selection problems with stochastic borrowing constraints. Journal of Industrial & Management Optimization, 2021, 17 (2) : 733-763. doi: 10.3934/jimo.2019132

[9]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[10]

Ripeng Huang, Shaojian Qu, Xiaoguang Yang, Zhimin Liu. Multi-stage distributionally robust optimization with risk aversion. Journal of Industrial & Management Optimization, 2021, 17 (1) : 233-259. doi: 10.3934/jimo.2019109

[11]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[12]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[13]

Yukihiko Nakata. Existence of a period two solution of a delay differential equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1103-1110. doi: 10.3934/dcdss.2020392

[14]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[15]

Bixiang Wang. Mean-square random invariant manifolds for stochastic differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1449-1468. doi: 10.3934/dcds.2020324

[16]

Guo Zhou, Yongquan Zhou, Ruxin Zhao. Hybrid social spider optimization algorithm with differential mutation operator for the job-shop scheduling problem. Journal of Industrial & Management Optimization, 2021, 17 (2) : 533-548. doi: 10.3934/jimo.2019122

[17]

Ryuji Kajikiya. Existence of nodal solutions for the sublinear Moore-Nehari differential equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1483-1506. doi: 10.3934/dcds.2020326

[18]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[19]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[20]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

 Impact Factor: 

Metrics

  • PDF downloads (267)
  • HTML views (550)
  • Cited by (8)

[Back to Top]