-
Previous Article
Constrained stochastic differential games with additive structure: Average and discount payoffs
- JDG Home
- This Issue
-
Next Article
Robust portfolio decisions for financial institutions
Games with nested constraints given by a level structure
Jalisco S/N, Valenciana, CP: 36240, CIMAT, A.C., Guanajuato, Gto, México |
In this paper we propose new games that satisfy nested constraints given by a level structure of cooperation. This structure is defined by a family of partitions on the set of players. It is ordered in such a way that each partition is a refinement of the next one. We propose a value for these games by adapting the Shapley value. The value is characterized axiomatically. For this purpose, we introduce a new property called class balance contributions by generalizing other properties in the literature. Finally, we introduce a multilinear extension of our games and use it to obtain an expression for calculating the adapted Shapley value.
References:
[1] |
M. Álvarez-Mozos and O. Tejada, Parallel characterizations of a generalized shapley value and a generalized banzhaf value for cooperative games with level structure of cooperation, Decision Support Systems, 52 (2011), 21-27. Google Scholar |
[2] |
R. J. Aumann and J. H. Dreze,
Cooperative games with coalition structures, International Journal of Game Theory, 3 (1974), 217-237.
doi: 10.1007/BF01766876. |
[3] |
J. M. Bilbao and P. H. Edelman,
The shapley value on convex geometries, Discrete Applied Mathematics, 103 (2000), 33-40.
doi: 10.1016/S0166-218X(99)00218-8. |
[4] |
E. Calvo, J. J. Lasaga and E. Winter,
The principle of balanced contributions and hierarchies of cooperation, Mathematical Social Sciences, 31 (1996), 171-182.
doi: 10.1016/0165-4896(95)00806-3. |
[5] |
U. Faigle and W. Kern,
The shapley value for cooperative games under precedence constraints, International Journal of Game Theory, 21 (1992), 249-266.
doi: 10.1007/BF01258278. |
[6] |
M. Gómez-Rúa and J. Vidal-Puga,
Balanced per capita contributions and level structure of cooperation, Top, 19 (2011), 167-176.
doi: 10.1007/s11750-009-0122-3. |
[7] |
J. C. Harsanyi,
A simplified bargaining model for the n-person cooperative game, Part of the Theory and Decision Library book series, 28 (1960), 44-70.
doi: 10.1007/978-94-017-2527-9_3. |
[8] |
S. Hart and A. Mas-Colell,
Potential, value, and consistency, Econometrica: Journal of the Econometric Society, 57 (1989), 589-614.
doi: 10.2307/1911054. |
[9] |
E. Kalai and D. Samet,
On weighted shapley values, International Journal of Game Theory, 16 (1987), 205-222.
doi: 10.1007/BF01756292. |
[10] |
Y. Kamijo,
The collective value: A new solution for games with coalition structures, Top, 21 (2013), 572-589.
doi: 10.1007/s11750-011-0191-y. |
[11] |
G. Koshevoy and D. Talman,
Solution concepts for games with general coalitional structure, Mathematical Social Sciences, 68 (2014), 19-30.
doi: 10.1016/j.mathsocsci.2013.12.004. |
[12] |
R. B. Myerson,
Graphs and cooperation in games, Mathematics of Operations Research, 2 (1977), 225-229.
doi: 10.1287/moor.2.3.225. |
[13] |
R. B. Myerson,
Conference structures and fair allocation rules, International Journal of Game Theory, 9 (1980), 169-182.
doi: 10.1007/BF01781371. |
[14] |
G. Owen,
Values of graph-restricted games, SIAM Journal on Algebraic Discrete Methods, 7 (1986), 210-220.
doi: 10.1137/0607025. |
[15] |
G. Owen, Multilinear extensions of games, in The Shapley value: essays in honor of Lloyd S. Shapley (ed. A. E. Roth), Cambridge University Press, 1988, chapter 10, 139-151. |
[16] |
G. Owen and E. Winter,
The multilinear extension and the coalition structure value, Games and Economic Behavior, 4 (1992), 582-587.
doi: 10.1016/0899-8256(92)90038-T. |
[17] |
G. Owen, Values of games with a priori unions, in Mathematical Economics and Game Theory, Springer, 141 (1977), 76-88. |
[18] |
R. Stanley,
Enumerative Combinatorics, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1986. |
[19] |
R. van den Brink, A. Khmelnitskaya and G. van der Laan,
An owen-type value for games with two-level communication structure, Annals of Operations Research, 243 (2016), 179-198.
doi: 10.1007/s10479-015-1808-6. |
[20] |
E. Winter,
A value for cooperative games with levels structure of cooperation, International Journal of Game Theory, 18 (1989), 227-240.
doi: 10.1007/BF01268161. |
show all references
References:
[1] |
M. Álvarez-Mozos and O. Tejada, Parallel characterizations of a generalized shapley value and a generalized banzhaf value for cooperative games with level structure of cooperation, Decision Support Systems, 52 (2011), 21-27. Google Scholar |
[2] |
R. J. Aumann and J. H. Dreze,
Cooperative games with coalition structures, International Journal of Game Theory, 3 (1974), 217-237.
doi: 10.1007/BF01766876. |
[3] |
J. M. Bilbao and P. H. Edelman,
The shapley value on convex geometries, Discrete Applied Mathematics, 103 (2000), 33-40.
doi: 10.1016/S0166-218X(99)00218-8. |
[4] |
E. Calvo, J. J. Lasaga and E. Winter,
The principle of balanced contributions and hierarchies of cooperation, Mathematical Social Sciences, 31 (1996), 171-182.
doi: 10.1016/0165-4896(95)00806-3. |
[5] |
U. Faigle and W. Kern,
The shapley value for cooperative games under precedence constraints, International Journal of Game Theory, 21 (1992), 249-266.
doi: 10.1007/BF01258278. |
[6] |
M. Gómez-Rúa and J. Vidal-Puga,
Balanced per capita contributions and level structure of cooperation, Top, 19 (2011), 167-176.
doi: 10.1007/s11750-009-0122-3. |
[7] |
J. C. Harsanyi,
A simplified bargaining model for the n-person cooperative game, Part of the Theory and Decision Library book series, 28 (1960), 44-70.
doi: 10.1007/978-94-017-2527-9_3. |
[8] |
S. Hart and A. Mas-Colell,
Potential, value, and consistency, Econometrica: Journal of the Econometric Society, 57 (1989), 589-614.
doi: 10.2307/1911054. |
[9] |
E. Kalai and D. Samet,
On weighted shapley values, International Journal of Game Theory, 16 (1987), 205-222.
doi: 10.1007/BF01756292. |
[10] |
Y. Kamijo,
The collective value: A new solution for games with coalition structures, Top, 21 (2013), 572-589.
doi: 10.1007/s11750-011-0191-y. |
[11] |
G. Koshevoy and D. Talman,
Solution concepts for games with general coalitional structure, Mathematical Social Sciences, 68 (2014), 19-30.
doi: 10.1016/j.mathsocsci.2013.12.004. |
[12] |
R. B. Myerson,
Graphs and cooperation in games, Mathematics of Operations Research, 2 (1977), 225-229.
doi: 10.1287/moor.2.3.225. |
[13] |
R. B. Myerson,
Conference structures and fair allocation rules, International Journal of Game Theory, 9 (1980), 169-182.
doi: 10.1007/BF01781371. |
[14] |
G. Owen,
Values of graph-restricted games, SIAM Journal on Algebraic Discrete Methods, 7 (1986), 210-220.
doi: 10.1137/0607025. |
[15] |
G. Owen, Multilinear extensions of games, in The Shapley value: essays in honor of Lloyd S. Shapley (ed. A. E. Roth), Cambridge University Press, 1988, chapter 10, 139-151. |
[16] |
G. Owen and E. Winter,
The multilinear extension and the coalition structure value, Games and Economic Behavior, 4 (1992), 582-587.
doi: 10.1016/0899-8256(92)90038-T. |
[17] |
G. Owen, Values of games with a priori unions, in Mathematical Economics and Game Theory, Springer, 141 (1977), 76-88. |
[18] |
R. Stanley,
Enumerative Combinatorics, Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1986. |
[19] |
R. van den Brink, A. Khmelnitskaya and G. van der Laan,
An owen-type value for games with two-level communication structure, Annals of Operations Research, 243 (2016), 179-198.
doi: 10.1007/s10479-015-1808-6. |
[20] |
E. Winter,
A value for cooperative games with levels structure of cooperation, International Journal of Game Theory, 18 (1989), 227-240.
doi: 10.1007/BF01268161. |
S | {1} | {2} | {3} | {4} | {2, 3} | {1, 2, 3} | {1, 2, 3, 4} |
v(S) | 1 | 1 | 0 | 1 | 2 | 4 | 6 |
S | {1} | {2} | {3} | {4} | {2, 3} | {1, 2, 3} | {1, 2, 3, 4} |
v(S) | 1 | 1 | 0 | 1 | 2 | 4 | 6 |
R | {1} | {2} | {1, 2} | R | {3} |
vC12(R) | 1 | 2 | 4 | vC22(R) | 1 |
R | {1} | {2} | {1, 2} | R | {3} |
vC12(R) | 1 | 2 | 4 | vC22(R) | 1 |
R | {1} | {2} | {1, 2} |
vC13(R) | 4 | 1 | 6 |
R | {1} | {2} | {1, 2} |
vC13(R) | 4 | 1 | 6 |
[1] |
Yan-An Hwang, Yu-Hsien Liao. Reduction and dynamic approach for the multi-choice Shapley value. Journal of Industrial & Management Optimization, 2013, 9 (4) : 885-892. doi: 10.3934/jimo.2013.9.885 |
[2] |
Yu Zhou. On the distribution of auto-correlation value of balanced Boolean functions. Advances in Mathematics of Communications, 2013, 7 (3) : 335-347. doi: 10.3934/amc.2013.7.335 |
[3] |
Qiang Zhang, Ping Chen. Multidimensional balanced credibility model with time effect and two level random common effects. Journal of Industrial & Management Optimization, 2017, 13 (5) : 1-18. doi: 10.3934/jimo.2019004 |
[4] |
Hernán Cendra, María Etchechoury, Sebastián J. Ferraro. An extension of the Dirac and Gotay-Nester theories of constraints for Dirac dynamical systems. Journal of Geometric Mechanics, 2014, 6 (2) : 167-236. doi: 10.3934/jgm.2014.6.167 |
[5] |
Suresh P. Sethi, Houmin Yan, Hanqin Zhang, Jing Zhou. Information Updated Supply Chain with Service-Level Constraints. Journal of Industrial & Management Optimization, 2005, 1 (4) : 513-531. doi: 10.3934/jimo.2005.1.513 |
[6] |
Sung-Seok Ko, Jangha Kang, E-Yeon Kwon. An $(s,S)$ inventory model with level-dependent $G/M/1$-Type structure. Journal of Industrial & Management Optimization, 2016, 12 (2) : 609-624. doi: 10.3934/jimo.2016.12.609 |
[7] |
Davide Bellandi. On the initial value problem for a class of discrete velocity models. Mathematical Biosciences & Engineering, 2017, 14 (1) : 31-43. doi: 10.3934/mbe.2017003 |
[8] |
Piermarco Cannarsa, Peter R. Wolenski. Semiconcavity of the value function for a class of differential inclusions. Discrete & Continuous Dynamical Systems - A, 2011, 29 (2) : 453-466. doi: 10.3934/dcds.2011.29.453 |
[9] |
Zheng-Jian Bai, Xiao-Qing Jin, Seak-Weng Vong. On some inverse singular value problems with Toeplitz-related structure. Numerical Algebra, Control & Optimization, 2012, 2 (1) : 187-192. doi: 10.3934/naco.2012.2.187 |
[10] |
Saman Babaie–Kafaki, Reza Ghanbari. A class of descent four–term extension of the Dai–Liao conjugate gradient method based on the scaled memoryless BFGS update. Journal of Industrial & Management Optimization, 2017, 13 (2) : 649-658. doi: 10.3934/jimo.2016038 |
[11] |
Joseph J Kohn. Nirenberg's contributions to complex analysis. Discrete & Continuous Dynamical Systems - A, 2011, 30 (2) : 537-545. doi: 10.3934/dcds.2011.30.537 |
[12] |
Gui-Hua Lin, Masao Fukushima. A class of stochastic mathematical programs with complementarity constraints: reformulations and algorithms. Journal of Industrial & Management Optimization, 2005, 1 (1) : 99-122. doi: 10.3934/jimo.2005.1.99 |
[13] |
Peiyu Li. Solving normalized stationary points of a class of equilibrium problem with equilibrium constraints. Journal of Industrial & Management Optimization, 2018, 14 (2) : 637-646. doi: 10.3934/jimo.2017065 |
[14] |
Chunyang Zhang, Shugong Zhang, Qinghuai Liu. Homotopy method for a class of multiobjective optimization problems with equilibrium constraints. Journal of Industrial & Management Optimization, 2017, 13 (1) : 81-92. doi: 10.3934/jimo.2016005 |
[15] |
Xiaoni Chi, Zhongping Wan, Zijun Hao. Second order sufficient conditions for a class of bilevel programs with lower level second-order cone programming problem. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1111-1125. doi: 10.3934/jimo.2015.11.1111 |
[16] |
X. Liang, Roderick S. C. Wong. On a Nested Boundary-Layer Problem. Communications on Pure & Applied Analysis, 2009, 8 (1) : 419-433. doi: 10.3934/cpaa.2009.8.419 |
[17] |
Teresa Faria. Asymptotic behaviour for a class of delayed cooperative models with patch structure. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1567-1579. doi: 10.3934/dcdsb.2013.18.1567 |
[18] |
Cheng-Hsiung Hsu, Suh-Yuh Yang. Structure of a class of traveling waves in delayed cellular neural networks. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 339-359. doi: 10.3934/dcds.2005.13.339 |
[19] |
Yuan Guo, Xiaofei Gao, Desheng Li. Structure of the set of bounded solutions for a class of nonautonomous second order differential equations. Communications on Pure & Applied Analysis, 2010, 9 (6) : 1607-1616. doi: 10.3934/cpaa.2010.9.1607 |
[20] |
Maria Aguareles, Marco A. Fontelos, Juan J. Velázquez. The structure of the quiescent core in rigidly rotating spirals in a class of excitable systems. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1605-1638. doi: 10.3934/dcdsb.2012.17.1605 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]