This paper deals with two-person nonzero-sum stochastic differential games (SDGs) with an additive structure, subject to constraints that are additive also. Our main objective is to give conditions for the existence of constrained Nash equilibria for the case of infinite-horizon discounted payoff. This is done by means of the Lagrange multipliers approach combined with dynamic programming arguments. Then, following the vanishing discount approach, the results in the discounted case are used to obtain constrained Nash equilibria in the case of long-run average payoff.
Citation: |
R. Akella and P. Kumar , Optimal control of production rate in a failure prone manufacturing system, IEEE Trans. Automatic Control., 31 (1986) , 116-126. doi: 10.1109/TAC.1986.1104206. | |
E. Altman and A. Shwartz A, Constrained Markov games: Nash equilibria, in: J.A. Filar, V. Gaitsgory, K. Mizukami (Eds.), Advances in Dynamic Games and Applications, Birkhäuser, Boston, 5 (2000), 213-221. | |
E. Altman , K. Avrachenkov , R. Marquez and G. Miller , Zero-sum constrained stochastic games with independent state processes, Math. Meth. Oper. Res., 62 (2005) , 375-386. doi: 10.1007/s00186-005-0034-4. | |
J. Alvarez-Mena and O. Hernández-Lerma , Existence of Nash equilibria for constrained stochastic games, Math. Methods Oper. Res., 63 (2006) , 261-285. doi: 10.1007/s00186-005-0003-y. | |
A. Arapostathis and V. Borkar , Uniform recurrence properties of controlled diffusions and applications to optimal control, SIAM J. Control Optim., 48 (2010) , 4181-4223. doi: 10.1137/090762464. | |
V. Bogachev , N. Krylov and M. Röckner , Regularity and global bounds for the densities of invariant measures of diffusion processe, Dokl. Akad. Nauk., 405 (2005) , 583-587. | |
V. Bogachev , M. Röckner and V. Stannat , Uniqueness of solutions of elliptic equations and uniqueness pf invariant measures of diffusions processes, Sb. Math., 193 (2002) , 945-976. | |
V. Borkar , A topology for Markov controls, Appl. Math. Optim., 20 (1989) , 55-62. doi: 10.1007/BF01447645. | |
V. Borkar and M. Ghosh , Controlled diffusions with constraints, J. Math. Anal. Appl., 152 (1990) , 88-108. doi: 10.1016/0022-247X(90)90094-V. | |
V. Borkar and M. Ghosh , Controlled diffusions with constraints Ⅱ, J. Math. Anal. Appl., 176 (1993) , 310-321. doi: 10.1006/jmaa.1993.1216. | |
V. Borkar and M. Ghosh , Stochastic differential games: Occupation measure based approach, J. Optim. Theory Appl., 73 (1992) , 359-385. | |
A. Calderón and J. Rosenblueth , Minimizing approximate original solutions for commensurate delayed controls, Appl. Math. Lett., 7 (1994) , 5-10. doi: 10.1016/0893-9659(94)90063-9. | |
A. Dvoretzky , A. Wald and J. Wolfowitz , Elimination of randomization in certain statistical decision procedure and zero-sum two person games, Ann. Math. Statist., 22 (1951) , 1-21. doi: 10.1214/aoms/1177729689. | |
B. Escobedo-Trujillo , J. López-Barrientos and O. Hernández-Lerma , Bias and overtaking equilibria for zero-sum stochastic differential games, J. Optim. Theory Appl., 153 (2012) , 662-687. doi: 10.1007/s10957-011-9974-4. | |
G. Folland, Real Analysis. Modern Techniques and Their Applications, 2$^{nd}$ edition, John Wiley and Sons, New York, 1999. | |
M. Ghosh , A. Arapostathis and S. Marcus , Ergodic control of switching diffusions, SIAM J. Control Optim., 35 (1997) , 1962-1988. doi: 10.1137/S0363012996299302. | |
M. Ghosh and A. Bagchi , Stochastic game with average payoff criterion, Appl. Math. Optim., 38 (1998) , 283-301. doi: 10.1007/s002459900092. | |
D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order. Reprinted version, Springer-Verlag, Berlin, 2001. | |
P. Glynn and S. Meyn , A Liapounov bound for solutions of the Poisson equation, Ann. Prob., 24 (1996) , 916-931. doi: 10.1214/aop/1039639370. | |
H. Hernández-Hernández , Existence of nash equilibria in discounted nonzero-sum stochastic games with additive structure, Morfismos, 6 (2002) , 43-65. | |
H. Jasso-Fuentes and O. Hernández-Lerma , Characterizations of overtaking optimality for controlled diffusion processes, Appl. Math. Optim., 57 (2008) , 349-369. doi: 10.1007/s00245-007-9025-6. | |
H. Jasso-Fuentes and G. Yin, Advanced Criteria for Controlled Markov-codulated Diffusions in an Infinite Horizon: Overtaking, Bias, and Blackwell Optimality, Science Press, Beijing China, 2013. | |
H. Jasso-Fuentes , B. Escobedo-Trujilo and A. Mendoza-Pérez , The Lagrange and the vanishing discount techniques to controlled diffusions with cost constraints, J. Math. Anal. Appl., 437 (2016) , 999-1035. doi: 10.1016/j.jmaa.2016.01.036. | |
H. Jasso-Fuentes , J. López-Barrientos and B. Escobedo-Trujilo , Infinite horizon nonzero-sum stochastic differential games with additive structure, IMA J. Math. Control Inform., 34 (2017) , 283-309. doi: 10.1093/imamci/dnv045. | |
F. Klebaner, Introduction to Stochastic Calculus with Applications, 2$^{nd}$ edition, Imperial College Press, London, 2005. | |
H. Küenle , Equilibrium strategies in stochastic games with additive cost and transition structure, Internat. Game Theory Rev., 1 (1999) , 131-147. doi: 10.1142/S0219198999000098. | |
A. Mendoza-Pérez , H. Jasso-Fuentes and O. Hernández , The Lagrange approach to ergodic control of diffusions with cost constraints, Optimization, 64 (2015) , 179-196. doi: 10.1080/02331934.2012.736992. | |
S. Meyn and R. Tweedie , Stability of Markovian processes, Ⅲ. Foster-Lyapunov criteria for continuous-time precesses, Adv. Appl. Prob., 25 (1993) , 518-548. | |
A. Nowak , Remark on sensitive equilibria in stochastic games with additive reward and transition structure, Math. Meth. Oper. Res., 64 (2006) , 481-494. doi: 10.1007/s00186-006-0090-4. | |
B. /Oksendal, Stochastic Differential Equations: An Introduction with Applications, 4 $^{th}$ edition, Springer-Verlag, New York, 1994. | |
T. Prieto-Rumeau and O. Hernández-Lerma , Bias and overtaking equilibria for zero-sum continuous-time Markov games, Math. Meth. Oper. Res., 61 (2005) , 437-454. doi: 10.1007/s001860400392. | |
T. Raghavan , S. Tijs and O. Vrieze , On stochastic games with additive reward and transition structure, J. Optim. Theory Appl., 47 (1985) , 451-464. doi: 10.1007/BF00942191. | |
V. Singh and N. Hemachandra , A characterization of stationary Nash equilibria of constrained stochastic games with independent state processes, Operations Research Letters, 42 (2014) , 48-52. doi: 10.1016/j.orl.2013.11.007. | |
J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, New York, 1972. | |
Q. Wei and X. Chen , Constrained stochastic games with the average payoff criteria, Operations Research Letters, 43 (2015) , 83-88. doi: 10.1016/j.orl.2014.12.003. |