- Previous Article
- JDG Home
- This Issue
-
Next Article
Stable manifold market sequences
Corrigendum to "A Malthus-Swan-Solow model of economic growth"
Departmento de Economa, Universidad Carlos Ⅲ de Madrid, Calle Madrid, 126, 28903 Getafe (Madrid), Spain |
References:
[1] |
L. C. Corchón,
A Malthus-Swan-Solow model of
economic growth, J. of Dyn. and Games, 3 (2016), 225-230.
doi: 10.3934/jdg.2016012. |
show all references
References:
[1] |
L. C. Corchón,
A Malthus-Swan-Solow model of
economic growth, J. of Dyn. and Games, 3 (2016), 225-230.
doi: 10.3934/jdg.2016012. |
[1] |
Luis C. Corchón. A Malthus-Swan-Solow model of economic growth. Journal of Dynamics and Games, 2016, 3 (3) : 225-230. doi: 10.3934/jdg.2016012 |
[2] |
Gaston Cayssials, Santiago Picasso. The Solow-Swan model with endogenous population growth. Journal of Dynamics and Games, 2020, 7 (3) : 197-208. doi: 10.3934/jdg.2020014 |
[3] |
Ellina Grigorieva, Evgenii Khailov. Optimal control of a nonlinear model of economic growth. Conference Publications, 2007, 2007 (Special) : 456-466. doi: 10.3934/proc.2007.2007.456 |
[4] |
AdélaÏde Olivier. How does variability in cell aging and growth rates influence the Malthus parameter?. Kinetic and Related Models, 2017, 10 (2) : 481-512. doi: 10.3934/krm.2017019 |
[5] |
Suresh P. Sethi, Houmin Yan, H. Y. Zhang. Corrigendum. Journal of Industrial and Management Optimization, 2005, 1 (4) : 588-588. doi: 10.3934/jimo.2005.1.588 |
[6] |
Shaowen Shi, Weinian Zhang. Bifurcations in an economic model with fractional degree. Discrete and Continuous Dynamical Systems - B, 2021, 26 (8) : 4407-4431. doi: 10.3934/dcdsb.2020293 |
[7] |
Gülden Gün Polat, Teoman Özer. On group analysis of optimal control problems in economic growth models. Discrete and Continuous Dynamical Systems - S, 2020, 13 (10) : 2853-2876. doi: 10.3934/dcdss.2020215 |
[8] |
Wisdom S. Avusuglo, Kenzu Abdella, Wenying Feng. Stability analysis on an economic epidemiological model with vaccination. Mathematical Biosciences & Engineering, 2017, 14 (4) : 975-999. doi: 10.3934/mbe.2017051 |
[9] |
Piotr Bajger, Mariusz Bodzioch, Urszula Foryś. Corrigendum to "Singularity of controls in a simple model of acquired chemotherapy resistance". Discrete and Continuous Dynamical Systems - B, 2020, 25 (5) : 2021-2021. doi: 10.3934/dcdsb.2020105 |
[10] |
Xinfu Chen, King-Yeung Lam, Yuan Lou. Corrigendum: Dynamics of a reaction-diffusion-advection model for two competing species. Discrete and Continuous Dynamical Systems, 2014, 34 (11) : 4989-4995. doi: 10.3934/dcds.2014.34.4989 |
[11] |
M. Dolfin, D. Knopoff, L. Leonida, D. Maimone Ansaldo Patti. Escaping the trap of 'blocking': A kinetic model linking economic development and political competition. Kinetic and Related Models, 2017, 10 (2) : 423-443. doi: 10.3934/krm.2017016 |
[12] |
Xiangyu Ge, Tifang Ye, Yanli Zhou, Guoguang Yan. Fiscal centralization vs. decentralization on economic growth and welfare: An optimal-control approach. Journal of Industrial and Management Optimization, 2016, 12 (2) : 487-504. doi: 10.3934/jimo.2016.12.487 |
[13] |
Reiner Henseler, Michael Herrmann, Barbara Niethammer, Juan J. L. Velázquez. A kinetic model for grain growth. Kinetic and Related Models, 2008, 1 (4) : 591-617. doi: 10.3934/krm.2008.1.591 |
[14] |
Elena Izquierdo-Kulich, José Manuel Nieto-Villar. Mesoscopic model for tumor growth. Mathematical Biosciences & Engineering, 2007, 4 (4) : 687-698. doi: 10.3934/mbe.2007.4.687 |
[15] |
Nicola Bellomo, Miguel A. Herrero, Andrea Tosin. On the dynamics of social conflicts: Looking for the black swan. Kinetic and Related Models, 2013, 6 (3) : 459-479. doi: 10.3934/krm.2013.6.459 |
[16] |
Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial and Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043 |
[17] |
Lars Grüne, Luca Mechelli, Simon Pirkelmann, Stefan Volkwein. Performance estimates for economic model predictive control and their application in proper orthogonal decomposition-based implementations. Mathematical Control and Related Fields, 2021, 11 (3) : 579-599. doi: 10.3934/mcrf.2021013 |
[18] |
Didier Bresch, Thierry Colin, Emmanuel Grenier, Benjamin Ribba, Olivier Saut. A viscoelastic model for avascular tumor growth. Conference Publications, 2009, 2009 (Special) : 101-108. doi: 10.3934/proc.2009.2009.101 |
[19] |
Mohammad A. Tabatabai, Wayne M. Eby, Sejong Bae, Karan P. Singh. A flexible multivariable model for Phytoplankton growth. Mathematical Biosciences & Engineering, 2013, 10 (3) : 913-923. doi: 10.3934/mbe.2013.10.913 |
[20] |
Rudolf Olach, Vincent Lučanský, Božena Dorociaková. The model of nutrients influence on the tumor growth. Discrete and Continuous Dynamical Systems - B, 2022, 27 (5) : 2607-2619. doi: 10.3934/dcdsb.2021150 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]