July  2018, 5(3): 189-201. doi: 10.3934/jdg.2018012

Imperfectly competitive markets, trade unions and inflation: Do imperfectly competitive markets transmit more inflation than perfectly competitive ones? A theoretical appraisal

Universidad Carlos Ⅲ, Madrid, Spain

Received  February 2018 Revised  March 2018 Published  May 2018

In this paper we study the theoretical plausibility of the conjecture that inflation arises because imperfectly competitive markets (ICM in the sequel) translate cost pushes in large price increases. We define two different measures of inflation transmission. We compared these measures in several models of ICM and in perfectly competitive markets (PCM in the sequel). In each case we find a necessary and sufficient condition for an ICM to transmit more inflation -according to the two measures-than that transmitted by a PCM.

Citation: Luis C. Corchón. Imperfectly competitive markets, trade unions and inflation: Do imperfectly competitive markets transmit more inflation than perfectly competitive ones? A theoretical appraisal. Journal of Dynamics & Games, 2018, 5 (3) : 189-201. doi: 10.3934/jdg.2018012
References:
[1]

J. BulowJ. Geanakoplos and P. Klemperer, Multimarket oligopoly: Strategic substitutes and complements, Journal of Political Economy, 93 (1985), 488-511.  doi: 10.1086/261312.  Google Scholar

[2]

D. Carlton, Chapter 15 of Handbood of Industrial Organization, (1989), 909-946. Google Scholar

[3]

A. Dixit and J. Stiglitz, Monopolistic competition and optimum productivity diversity, American Economic Review, 67 (1977), 297-308.   Google Scholar

[4]

O. Hart, A model of imperfect compeition with Keynesian features, Quarterly Journal of Economics, 97 (1982), 109-138.   Google Scholar

[5]

J. Nash, The bargaining problem, Econometrica, 18 (1950), 155-162.  doi: 10.2307/1907266.  Google Scholar

[6]

M. Salinger, Tobin's q, unioniziton and the concentration-profits relationship, Rand Journal of Economics, 15 (1984), 159-170.   Google Scholar

[7]

S. Salop, Monopolistic competition with outside goods, The Bell Journal of Economics, 10 (1979), 141-156.  doi: 10.2307/3003323.  Google Scholar

[8]

T. Scitovsky, Market power and inflation, Econometrica, 45 (1978), 221-233.  doi: 10.2307/2553069.  Google Scholar

[9]

M. Spence, Product selection, fixed costs and monopolistic competition, Review of Economic Studies, 43 (1976), 217-235.  doi: 10.2307/2297319.  Google Scholar

[10]

P. A. Zaleski, Industry concentration and the transmission of cost-push inflation: evidence from the 1974 OPEC oil crises, Journal of Economics and Business, 44 (1992), 135-141.  doi: 10.1016/0148-6195(92)90012-Y.  Google Scholar

show all references

References:
[1]

J. BulowJ. Geanakoplos and P. Klemperer, Multimarket oligopoly: Strategic substitutes and complements, Journal of Political Economy, 93 (1985), 488-511.  doi: 10.1086/261312.  Google Scholar

[2]

D. Carlton, Chapter 15 of Handbood of Industrial Organization, (1989), 909-946. Google Scholar

[3]

A. Dixit and J. Stiglitz, Monopolistic competition and optimum productivity diversity, American Economic Review, 67 (1977), 297-308.   Google Scholar

[4]

O. Hart, A model of imperfect compeition with Keynesian features, Quarterly Journal of Economics, 97 (1982), 109-138.   Google Scholar

[5]

J. Nash, The bargaining problem, Econometrica, 18 (1950), 155-162.  doi: 10.2307/1907266.  Google Scholar

[6]

M. Salinger, Tobin's q, unioniziton and the concentration-profits relationship, Rand Journal of Economics, 15 (1984), 159-170.   Google Scholar

[7]

S. Salop, Monopolistic competition with outside goods, The Bell Journal of Economics, 10 (1979), 141-156.  doi: 10.2307/3003323.  Google Scholar

[8]

T. Scitovsky, Market power and inflation, Econometrica, 45 (1978), 221-233.  doi: 10.2307/2553069.  Google Scholar

[9]

M. Spence, Product selection, fixed costs and monopolistic competition, Review of Economic Studies, 43 (1976), 217-235.  doi: 10.2307/2297319.  Google Scholar

[10]

P. A. Zaleski, Industry concentration and the transmission of cost-push inflation: evidence from the 1974 OPEC oil crises, Journal of Economics and Business, 44 (1992), 135-141.  doi: 10.1016/0148-6195(92)90012-Y.  Google Scholar

Figure 1.  Inflationary Sensitivity of the Cournot Equilibrium Given n.
Figure 2.  Inflationary Elasticity of the Cournot Equilibrium Given n.
Figure 3.  Inflationary Elasticity of the Cournot Equilibrium with free entry.
Figure 4.  Theorem 3.1
[1]

Zongyuan Li, Weinan Wang. Norm inflation for the Boussinesq system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (10) : 5449-5463. doi: 10.3934/dcdsb.2020353

[2]

Jingzhen Liu, Ka Fai Cedric Yiu, Alain Bensoussan. The optimal mean variance problem with inflation. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 185-203. doi: 10.3934/dcdsb.2016.21.185

[3]

Emiliano Alvarez, Silvia London. Emerging patterns in inflation expectations with multiple agents. Journal of Dynamics & Games, 2020, 7 (3) : 175-184. doi: 10.3934/jdg.2020012

[4]

Nobu Kishimoto. A remark on norm inflation for nonlinear Schrödinger equations. Communications on Pure & Applied Analysis, 2019, 18 (3) : 1375-1402. doi: 10.3934/cpaa.2019067

[5]

S.M. Moghadas. Modelling the effect of imperfect vaccines on disease epidemiology. Discrete & Continuous Dynamical Systems - B, 2004, 4 (4) : 999-1012. doi: 10.3934/dcdsb.2004.4.999

[6]

Sara Monsurrò, Carmen Perugia. Homogenization and exact controllability for problems with imperfect interface. Networks & Heterogeneous Media, 2019, 14 (2) : 411-444. doi: 10.3934/nhm.2019017

[7]

C. Bandle, Y. Kabeya, Hirokazu Ninomiya. Imperfect bifurcations in nonlinear elliptic equations on spherical caps. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1189-1208. doi: 10.3934/cpaa.2010.9.1189

[8]

Micol Amar, Daniele Andreucci, Claudia Timofte. Homogenization of a modified bidomain model involving imperfect transmission. Communications on Pure & Applied Analysis, 2021, 20 (5) : 1755-1782. doi: 10.3934/cpaa.2021040

[9]

Haripriya Barman, Magfura Pervin, Sankar Kumar Roy, Gerhard-Wilhelm Weber. Back-ordered inventory model with inflation in a cloudy-fuzzy environment. Journal of Industrial & Management Optimization, 2021, 17 (4) : 1913-1941. doi: 10.3934/jimo.2020052

[10]

Shunfu Jin, Wuyi Yue, Shiying Ge. Equilibrium analysis of an opportunistic spectrum access mechanism with imperfect sensing results. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1255-1271. doi: 10.3934/jimo.2016071

[11]

Luisa Faella, Carmen Perugia. Optimal control for a hyperbolic problem in composites with imperfect interface: A memory effect. Evolution Equations & Control Theory, 2017, 6 (2) : 187-217. doi: 10.3934/eect.2017011

[12]

Andrea Tellini. Imperfect bifurcations via topological methods in superlinear indefinite problems. Conference Publications, 2015, 2015 (special) : 1050-1059. doi: 10.3934/proc.2015.1050

[13]

Mathias Staudigl, Jan-Henrik Steg. On repeated games with imperfect public monitoring: From discrete to continuous time. Journal of Dynamics & Games, 2017, 4 (1) : 1-23. doi: 10.3934/jdg.2017001

[14]

Biswajit Sarkar, Bimal Kumar Sett, Sumon Sarkar. Optimal production run time and inspection errors in an imperfect production system with warranty. Journal of Industrial & Management Optimization, 2018, 14 (1) : 267-282. doi: 10.3934/jimo.2017046

[15]

Bo Zheng, Wenliang Guo, Linchao Hu, Mugen Huang, Jianshe Yu. Complex wolbachia infection dynamics in mosquitoes with imperfect maternal transmission. Mathematical Biosciences & Engineering, 2018, 15 (2) : 523-541. doi: 10.3934/mbe.2018024

[16]

Zhanying Yang. Homogenization and correctors for the hyperbolic problems with imperfect interfaces via the periodic unfolding method. Communications on Pure & Applied Analysis, 2014, 13 (1) : 249-272. doi: 10.3934/cpaa.2014.13.249

[17]

Ata Allah Taleizadeh, Hadi Samimi, Biswajit Sarkar, Babak Mohammadi. Stochastic machine breakdown and discrete delivery in an imperfect inventory-production system. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1511-1535. doi: 10.3934/jimo.2017005

[18]

Francesco Salvarani, Gabriel Turinici. Optimal individual strategies for influenza vaccines with imperfect efficacy and durability of protection. Mathematical Biosciences & Engineering, 2018, 15 (3) : 629-652. doi: 10.3934/mbe.2018028

[19]

Abba B. Gumel, C. Connell McCluskey, James Watmough. An sveir model for assessing potential impact of an imperfect anti-SARS vaccine. Mathematical Biosciences & Engineering, 2006, 3 (3) : 485-512. doi: 10.3934/mbe.2006.3.485

[20]

Huai-Nian Zhu, Cheng-Ke Zhang, Zhuo Jin. Continuous-time mean-variance asset-liability management with stochastic interest rates and inflation risks. Journal of Industrial & Management Optimization, 2020, 16 (2) : 813-834. doi: 10.3934/jimo.2018180

 Impact Factor: 

Metrics

  • PDF downloads (135)
  • HTML views (390)
  • Cited by (4)

Other articles
by authors

[Back to Top]