[1]
|
D. Auger, P. Coucheney and Y. and Strozecki, Finding optimal strategies of almost acyclic
simple stochastic games, Theory and applications of models of computation, Lecture Notes
in Comput. Sci., 8402 (2014), 67–85.
|
[2]
|
M. de Berg, M. van Kreveld, M. Overmars and O. Schwarzkopf,
Computational Geometry: Algorithms and Applications,
(2nd. rev. ed.) Springer, Berlin 2000.
doi: 10.1007/978-3-662-04245-8.
|
[3]
|
A. Condon, The complexity of stochastic games, Information and Computation, 96 (1992), 203-224.
doi: 10.1016/0890-5401(92)90048-K.
|
[4]
|
A. Condon, On algorithms for simple stochastic games, Advances in Computational Complexity Theory, J. Cai (Ed.), DIMACS Series in Discrete Mathematics and Theoretical Computer
Science AMS, 14 (1993), 51–71.
|
[5]
|
J. Filar and K. Vrieze,
Competitive Markov Decision Processes, Springer, New York, 1997.
|
[6]
|
H. Gimbert and F. Horn, Simple stochastic games with few random vertices are easy to
solve, Foundations of software science and computational structures, 5–19, Lecture Notes in
Comput. Sci., 4962, Springer, Berlin. 2008
doi: 10.1007/978-3-540-78499-9_2.
|
[7]
|
J. Haigh and M. Roters, Optimal strategy in a dice game, Journal of Applied Probability, 37 (2000), 1110-1116.
doi: 10.1239/jap/1014843089.
|
[8]
|
N. Halman, Simple stochastic games, parity games, mean payoff games and discounted payoff games are all LP-type problems, Algorithmica, 49 (2007), 37-50.
doi: 10.1007/s00453-007-0175-3.
|
[9]
|
T. D. Hansen, P. B. Miltersen and U. Zwick, Strategy iteration is strongly polynomial for 2-
player turn-based stochastic games with a constant discount factor, Innovations in Computer
Science (ICS'11), (2011), 253–263.
|
[10]
|
A. J. Hoffman and R. M. Karp, On nonterminating stochastic games, Management Science, 12 (1966), 359-370.
doi: 10.1287/mnsc.12.5.359.
|
[11]
|
R. Ibsen-Jensen and P. B. Miltersen, Solving simple stochastic games with few coin toss
positions, Algorithms–ESA 20112, LNCS, 7501 (2012), 636–647.
doi: 10.1007/978-3-642-33090-2_55.
|
[12]
|
G. Louchard, Recent studies on the dice race problem and its connections, Math. Appl. (Warsaw), 44 (2106), 63-86.
doi: 10.14708/ma.v44i1.1124.
|
[13]
|
T. M. Liggett and S. A. Lippman, Stochastic games with perfect information and time average payoff, SIAM Review, 11 (1969), 604-607.
doi: 10.1137/1011093.
|
[14]
|
J. Matoušek, M. Sharir and E. Welzl, A subexponential bound for linear programming, Algorithmica, 16 (1996), 498-516.
doi: 10.1007/BF01940877.
|
[15]
|
J. von Neumann and O. Morgenstern,
Theory of Games and Economic Behavior, Princeton University Press, Princeton, New Jersey. 1944.
|
[16]
|
T. Neller and C. Presser, Optimal play of the dice game pig, The UMAP Journal, 25 (2004), 25-47.
|
[17]
|
M. Roters, Optimal stopping in a dice game, Journal of Applied Probability, 35 (1998), 229-235.
doi: 10.1239/jap/1032192566.
|
[18]
|
L. S. Shapley, Stochastic games, Proceedings of the Natural Academy of Sciences, USA, 39 (1953), 1095-1100.
doi: 10.1073/pnas.39.10.1953.
|
[19]
|
R. Tripathi, E. Valkanova and V. S. Anil Kumar, On strategy improvement algorithms for simple stochastic games, Journal of Discrete Algorithms, 9 (2011), 263-278.
doi: 10.1016/j.jda.2011.03.007.
|
[20]
|
H. Tijms, Dice games and stochastic dynamic programming, Morfismos, 11 (2004), 1-14.
|
[21]
|
H. Tijms and J. van der Wal, A real-world stochastic two-person game, Probab. Engrg. Inform. Sci., 20 (2006), 599-608.
doi: 10.1017/S0269964806060372.
|
[22]
|
O. J. Vrieze, S. H. Tijs, T. E. S. Raghavan and J. A. Filar, A finite algorithm for the switching control stochastic game, Operations-Research-Spektrum, 5 (1983), 15-24.
|