We consider the minimax impulse control problem in finite horizon, when the cost functions are positive and not bounded from below with a strictly positive constant. We show existence of value function of the problem. Moreover, the value function is characterized as the unique viscosity solution of Hamilton-Jacobi-Bellman-Isaacs equation. This problem is in relation with an application in mathematical finance.
Citation: |
[1] |
V. I. Arnold, Ordinary Differential Equations, Springer, New York, 1992.
![]() |
[2] |
G. Barles, Deterministic impulse control problems, SIAM J. Control Optim., 23 (1985), 419-432.
doi: 10.1137/0323027.![]() ![]() ![]() |
[3] |
E. N. Barron, L. C. Evans and R. Jensen, Viscosity solutions of Isaaes' equations and differential games with Lipschitz controls, J Differential Equations, 53 (1984), 213-233.
doi: 10.1016/0022-0396(84)90040-8.![]() ![]() ![]() |
[4] |
A. Bensoussan and J. L. Lions, Impulse Control and Quasi-Variational Inequalities, Bordes, Paris, 1984.
![]() |
[5] |
P. Bernhard, A robust control approach to option pricing including transaction costs, Annals of the ISDG., 7 (2005), 391-416.
doi: 10.1007/0-8176-4429-6_22.![]() ![]() ![]() |
[6] |
P. Bernhard, N. El Farouq and S. Thiery, An impulsive differential game arising in finance with interesting singularities, Annals of the ISDG., 8 (2006), 335-363.
doi: 10.1007/0-8176-4501-2_18.![]() ![]() ![]() |
[7] |
G. Bertola, W. Runggaldier and K. Yasuda, On classical and restricted impulse stochastic control for the exchange rate, Appl Math Optim., 74 (2016), 423-454.
doi: 10.1007/s00245-015-9320-6.![]() ![]() ![]() |
[8] |
I. Capuzzo-Dolcetta and L. C. Evans, Optimal switching for ordinary differential equations, SIAM J. Control Optim., 22 (1984), 143-161.
doi: 10.1137/0322011.![]() ![]() ![]() |
[9] |
M. Crandall, H. Ishii and P. L. Lions, User s guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67.
doi: 10.1090/S0273-0979-1992-00266-5.![]() ![]() ![]() |
[10] |
S. Dharmatti and A. J. Shaiju, Infinite dimensional differential games with hybrid controls, Proc. Indian Acad. Sci. Math., 117 (2007), 233-257.
doi: 10.1007/s12044-007-0019-8.![]() ![]() ![]() |
[11] |
S. Dharmatti and M. Ramaswamy, Zero-sum differential games involving hybrid controls, J. Optim. Theory Appl., 128 (2006), 75-102.
doi: 10.1007/s10957-005-7558-x.![]() ![]() ![]() |
[12] |
B. El Asri, Optimal multi-modes switching problem in infinite horizon, Stochastics and Dynamics, 10 (2010), 231-261.
doi: 10.1142/S0219493710002930.![]() ![]() ![]() |
[13] |
B. El Asri, Deterministic minimax impulse control in finite horizon: The viscosity solution approach, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), 63-77.
doi: 10.1051/cocv/2011200.![]() ![]() ![]() |
[14] |
B. El Asri, Stochastic optimal multi-modes switching with a viscosity solution approach, Stochastic Processes and their Applications, 123 (2013), 579-602.
doi: 10.1016/j.spa.2012.09.007.![]() ![]() ![]() |
[15] |
B. EL Asri and S. Mazid, Zero-sum stochastic differential game in finite horizon involving impulse controls, Appl Math Optim., (2018), 1-33.
doi: 10.1007/s00245-018-9529-2.![]() ![]() |
[16] |
B. El Asri and S. Mazid, Stochastic differential switching game in infinite horizon, In arXiv preprint, 2018.
![]() |
[17] |
N. El Farouq, G. Barles and P. Bernhard, Deterministic minimax impulse control, Appl Math Optim., 61 (2010), 353-378.
doi: 10.1007/s00245-009-9090-0.![]() ![]() ![]() |
[18] |
L. C. Evans and P. E. Souganidis, Differential games and representation formulas for the solution of Hamilton-Jacobi-Isaacs equations, Indiana Univ. J. Math., 33 (1984), 773-797.
doi: 10.1512/iumj.1984.33.33040.![]() ![]() ![]() |
[19] |
W. H. Fleming, The convergence problem for differential games, Ⅱ., Ann. Math. Study, 52 (1964), 195-210.
![]() ![]() |
[20] |
P. L. Lions, Generalized Solutions of Hamilton-Jacobi Equations, Pitman, London, 1982.
![]() ![]() |
[21] |
P. L. Lions and P. E. Souganidis, Differential games, optimal control and directional derivatives of viscosity solutions of Bellman s and Isaacs equations, SIAM J. Control Optim., 23 (1985), 566-583.
doi: 10.1137/0323036.![]() ![]() ![]() |
[22] |
A. J. Shaiju and S. Dharmatti, Differential games with continuous, switching and impulse controls, Nonlinear Anal., 63 (2005), 23-41.
doi: 10.1016/j.na.2005.04.002.![]() ![]() ![]() |
[23] |
P. E. Souganidis, Max-min representations and product formulas for the viscosity solutions of Hamilton-Jacobi equations with applications to differential games, Nonlinear Anal. Theory Methods Appl., 9 (1985), 217-257.
doi: 10.1016/0362-546X(85)90062-8.![]() ![]() ![]() |
[24] |
J. M. Yong, Systems governed by ordinary differential equations with continuous, switching and impulse controls, Appl Math Opti., 20 (1989), 223-235.
doi: 10.1007/BF01447655.![]() ![]() ![]() |
[25] |
J. M. Yong, Optimal switching and impulse controls for distributed parameter systems, Systems Sci Math Sci., 2 (1989), 137-160.
![]() ![]() |
[26] |
J. M. Yong, Differential games with switching strategies, J Math Anal Appl., 145 (1990), 455-469.
doi: 10.1016/0022-247X(90)90413-A.![]() ![]() ![]() |
[27] |
J. M. Yong, A zero-sum differential game in a finite duration with switching strategies, SIAM J Control Optim., 28 (1990), 1234-1250.
doi: 10.1137/0328066.![]() ![]() ![]() |
[28] |
J. M. Yong, Zero-sum differential games involving impulse controls, Appl.Math. Optim., 29 (1994), 243-261.
doi: 10.1007/BF01189477.![]() ![]() ![]() |