\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Establishing limits to agriculture and afforestation: A GIS based multi-objective approach to prevent algal blooms in a coastal lagoon

This work was supported by CSIC-Udelar, ANII and PEDECIBA.
Abstract / Introduction Full Text(HTML) Figure(7) / Table(3) Related Papers Cited by
  • Biodiversity conservation and ecosystem services provision can compete with other land uses due to its incompatibility with many productive activities. The need for multifunctional landscapes that simultaneously provide food security, maintenance of ecological functions and fulfill welfare requirements is evident. Multi-objective optimization procedures can select between different land uses in each parcel of the territory, simultaneously satisfying contrasting objectives. Each solution (a map) represents a spatial configuration of land uses, generating spatial alternatives and offering flexibility to conduct discussions among social actors. In order to prevent eutrophication we developed a methodological approach for planning land-use transformations in productive territories, considering ecological processes from the beginning. A two-objective approach was used to allocate different land uses in the most suitable sites (objective one) that simultaneously minimize nutrients exportation (objective two). The land uses allocation was Pareto optimal and was conducted by integer linear programming. According to the relative importance given to each objective, two types of land use allocation were obtained, one dominated by agriculture but where a threshold of phosphorus load was exceeded, and another one where conservation and livestock ranching on natural grasslands prevailed and the phosphorus load decreased dramatically. This spatially explicit tool helps decision makers to design multifunctional landscapes for sustainable development and promote social discussions.

    Mathematics Subject Classification: Primary: 58F15, 58F17; Secondary: 53C35.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Laguna de Rocha watershed. Land cover in 2011 and the protected area boundary are indicated

    Figure 2.  Land suitability maps for a) agriculture, b) afforestation and c) livestock ranching and biodiversity conservation, obtained from [53]. Detailed explanation of each map construction is presented in Methods

    Figure 3.  Steps followed for the determination of: a) the phosphorus load exported by the watershed and b) the phosphorus load that the lagoon can receive without promoting the growth of cyanobacteria, over a year

    Figure 4.  Maps of optimal allocation of land uses in Laguna de Rocha watershed obtained for different $ \alpha $ values

    Figure 5.  Shows the number of pixels assigned to each land cover for the different levels of $ \alpha $. The P threshold for cyanobacteria growth is located between $ \alpha $ values of 0.234 and 0.24

    Figure 6.  In black are shown the pixels were the optimization procedure allocated agriculture and also have high conservation and livestock ranching suitability (values = 0.5) in the catchment area of Laguna de Rocha. Left figure: $ \alpha $ = 0.0001 to 0.1 and right figure: $ \alpha $ = 0.1. For higher $ \alpha $ values the model stops allocating agriculture in suitable pixels for G+C. The number of pixels selected (in black) in both cases are 13,038 (6,519 ha) and 893 (446.5 ha), respectively

    Figure 7.  In black are shown the pixels were the optimization procedure allocated conservation and livestock ranching and also have high agriculture suitability (values = 0.5) in the catchment area of Laguna de Rocha Left figure: $ \alpha $ = 0.235 and right figure: $ \alpha $ = 0.24. The number of pixels selected (in black) in both cases are 13,276 (6,638 ha) and 22,079 (22,079 ha), respectively

    Table 1.  Description of land covers of Laguna de Rocha watershed from a 2011 Landsat image (obtained from [42]). The table indicates the land use that is currently carried out in each cover, and the land use that each land cover can take after optimization. A: agriculture, F: afforestation, G + C: livestock ranching and conservation. The pixels with land covers that cannot change during modeling were not included for the optimization procedure

    Land coverDescriptionLand useLand use that pixels can take after modeling
    GrasslandsSoils covered by natural grasslands (Fig. 1)Livestock ranching & conservation (G+C)A, F, G+C
    Flooded grasslands and wetlandsAreas near by water bodies that are flooded frequently (Fig. 1)G+CG+C
    DunesDunes and sand deposits, mostly in the coastal zone (Fig. 1)G+CG+C
    Natural forestsNative trees and shrub vegetation (Fig. 1)G+CG+C
    AgricultureAgriculture in 2011 image (taken from [42]), it includes mainly cereals crops and artificial prairies, and also oversowing, tiled lands, stovers, forage crops and horticulture (Fig. 1).Mainly agriculture and artificial prairies (A)A, F, G+C
    AfforestationAfforested lands in 2011 image with exotic species to supply industry (Fig. 1)Afforestation (F)F
    Buffer stripLands adjacent to the streams, the width is variable and proportional to the order of the streams (Fig. 1)G+C or A or FG+C
     | Show Table
    DownLoad: CSV

    Table 2.  Phosphorus export from each land cover. It shows the number of pixels occupied by each land cover in 2011, the export coefficients and the TP load that each cover exports. Each pixel has a surface area of half a hectare

    Land coverNumber of PixelsP Export Coefficient (kgP/ha/y) P load exported by each land cover (kg P/y)
    Dunes and sand deposits4950.012.5
    Natural forests175450.01 [22]87.7
    Buffer strips747990.01 (the same as wetlands)374.0
    Afforestation76110.29 [5]1104.0
    Wetlands and flooded grasslands260820.01 [31]130.4
    Grasslands830730.24 (Adapted from [19])9968.8
    Agriculture128662.6 (average between values for cereals [35] and artificial praires [51])16725.8
    TOTAL22471 28392.8
     | Show Table
    DownLoad: CSV

    Table 3.  Surface area of the different land uses of the optimization trials shown in Fig. 4. The value of $ \alpha $ and the load of TP is indicated

    α Agriculture (ha) Livestock ranching and conservation (ha) Afforestation (ha) Surface area not included in the model (ha) P load (kg - year)
    0.0125,487.513,1009,38263,26673,830.5
    0.117,70720,880.59,38263,26655,468.5
    0.23516,79221,795.59,38263,26653,309.1
    0.2401,35137,236.59,38263,26616,868.3
     | Show Table
    DownLoad: CSV
  • [1] T. AguiarR. RaeraL. ParronA. Brito and M. Ferreira, Nutrient removal effectiveness by riparian buffer zones in rural temperate watersheds: The impact of no-till crops practices, Agricultural Water Manangement, 149 (2015), 74-80.  doi: 10.1016/j.agwat.2014.10.031.
    [2] A. AltesorG. EgurenN. MazzeoD. Panario and C. Rodríguez, La industria celulosa y sus efectos: Certezas e incertidumbres, Ecologa Austral, 18 (2008), 291-303. 
    [3] M. Altieri, Agroecology. The Science of Sustainable Agriculture, 2$^{nd}$ edition, CRC Press. Taylor & Francis Group, 2018.
    [4] L. Aubriot, D. Conde, S. Bonilla, V. Hein and A. Britos, Vulnerabilidad de una laguna costera en una Reserva de Biosfera: indicios recientes de eutrofización, in Taller internacional de Eutrofizacin de Lagos y Embalses, CYTED (eds. I. Vila and J. Pizarro), Patagonia Impresores, Chile, (2005), 65–85.
    [5] P. Barreto, Efectos Iniciales de la Aforestación Sobre la Calidad del Agua de Escurrimiento en una Cuenca del río Tacuarembó, Tesis de Master en Ciencias Agrarias, Facultad de Agronoma - UdelaR, Montevideo, 2008.
    [6] L. Bojórquez-TapiaE. Ongay-Delhumeau and E. Ezcurra, Multivariate approach for suitability assessment and environmental conflict resolution, Journal of Environmental Management, 41 (1994), 187-198. 
    [7] L. Bojórquez-TapiaS. Daz-Mondragn and E. Ezcurra, GIS-based approach for participatory decision making and land suitability assessment, International Journal of Geographical Information Science, 15 (2001), 129-151. 
    [8] S. BonillaD. CondeL. Aubriot and M. Pérez, Influence of hydrology on phytoplankton species composition and life strategies in a subtropical coastal lagoon periodically connected with the atlantic ocean, Estuaries, 28 (2005), 884-895.  doi: 10.1007/BF02696017.
    [9] S. BonillaS. HaakonssonA. SommaA. GravierA. BritosL. VidalL. De LeónB. BrenaM. PírezC. PicciniG. Martínez de la EscaleraG. ChalarM. González-PianaF. Martigani and L. Aubriot, Cianobacterias y cianotoxinas en Uruguay, Innotec, 10 (2015), 9-22. 
    [10] C. Cabrera, L. Rodríguez-Gallego and C. Kruk, Efecto de la salinidad y la concentración de nutrientes en las floraciones de cianobacterias de una laguna costera de Uruguay, in El agua en la producción agropecuaria (eds. A. Fernández, A. Volpedo A and A. Pérez Carrera), UBA, CONICET, Buenos Aires, Argentina, 2013.
    [11] C. Cabrera, Optimización de Usos de Suelo Para Prevenir Floraciones Nocivas de Fitoplancton en el Área Protegida Laguna de Rocha, Master Thesis, PEDECIBA-Geociencias, Facultad de Ciencias-UdelaR, Montevideo, 2015.
    [12] S. Carpenter, Eutrophication of aquatic ecosystems: Bistability and soil phosphorus, Proceedings of the National Academy of Sciences, 102 (2005), 10002-10005.  doi: 10.1073/pnas.0503959102.
    [13] P. ChopingT. DoréL. Guindé and J.-M. Blazy, MOSAICA: A multi-scale bioeconomic model for the design and ex ante assessment of cropping system mosaics, Agricultural Systems, 140 (2015), 26-39. 
    [14] C. Coello Coello, G. Lamont and D. Van Veldhuizen, Evolutionary Algorithms for Solving Multi-Objective Problems, Springer US, 2007.
    [15] D. Conde, L. Rodríguez-Gallego, D. de Álava, N. Verrastro, C. Chreties, X. Lagos, S. Solari, G. Piñeiro, L. Teixeira, L. Seijo, J. Vitancurt, H. Caymaris and D. Panario, Solutions for sustainable coastal lagoon management: From conflict to the implementation of a consensual decision tree for artificial opening, in Coastal Zones: Solutions for the 21st Century (eds. Baztan et al.), Elsevier, Amsterdam, (2015), 217–250.
    [16] D. CondeL. Aubriot and R. Sommaruga, Changes in UV penetration associated with marine intrusions and freshwater discharge in a shallow coastal lagoon of the Southern Atlantic Ocean, Marine Ecology Progress Series, 207 (2000), 19-31.  doi: 10.3354/meps207019.
    [17] Deltares, D-Water Quality, Water quality and aquatic ecology modelling suite. User Manual - Water Quality and Aquatic Ecology, and Technical Reference Manual - Processes Library Description., Delft, The Netherlands, 2013.
    [18] W. Dodds and R. Oakes, Controls on nutrients across a prairie stream watershed: Land use and riparian cover effects, Environmental Management, 37 (2006), 634-646.  doi: 10.1007/s00267-004-0072-3.
    [19] J. DrewryL. NewhamR. GreeneA. Jakeman and B. Croke, A review of nitrogen and phosphorus export to waterways: Context for catchment modeling, Marine and Freshwater Research, 58 (2006), 757-774.  doi: 10.1071/MF05166.
    [20] M. Ehrgott and X. Gandibleux, Multiobjective combinatorial optimization, in Multiple Criteria Optimization: State of the Art Annotated Bibliographic Surveys. International Series in Operations Research & Management Science (eds. M. Ehrgott and X. Gandibleux), Springer, Berlin, 52 (2002), 369–444. doi: 10.1007/0-306-48107-3_8.
    [21] M. Ehrgott, Multicriteria Optimization, Springer, Berlin, 2005.
    [22] EPA, Methods for Evaluating Wetland Condition: Land-Use Characterization for Nutrient and Sediment Risk Assessment, Office of Water, U.S. Environmental Protection Agency, Washington, DC. EPA-822-R-02-025, 2002.
    [23] K. FarleyE. Jobbágy and R. Jackson, Effects of afforestation on water yield: A global synthesis with implications for policy, Global Change Biology, 11 (2005), 1565-1576.  doi: 10.1111/j.1365-2486.2005.01011.x.
    [24] T. Fischer and V. Onyago, Strategic environmental assessment-related research projects and journal articles: an overview of the past 20 years, Impact Assessment and Project Appraisal, 30 (2012), 253-263.  doi: 10.1080/14615517.2012.740953.
    [25] R. FourerD. Gay and B. Kernighan, A Modeling Language for Mathematical Programming, Management Science, 36 (1990), 519-554.  doi: 10.1287/mnsc.36.5.519.
    [26] F. García Préchac, O. Ernst, P. Arbeleche, M. Pérez Bidegain, C. Pritsch, A. Ferenczi and M. Rivas, Intensificación Agrícola: Oportunidades y Amenazas Para un País Productivo y Natural, Fondo Universitario para Contribuir a la Comprensión Pública de Temas de Interés General. UdelaR-CSIC Colección Art. 2. Montevideo, 2010.
    [27] H. GodfrayI. BeddingtonL. HaddadD. LawrenceJ. MuirJ. PrettyS. RobinsonS. Thomas and C. Toulmin, Food security: The challenge of feeding 9 billion people, Science, 327 (2010), 812-818.  doi: 10.1126/science.1185383.
    [28] D. Gordon, P. Boudreau, H. Mann, J. Ong, W. Sivert, S. Smith, G. Wattayakorn, P. Wulff and T. Yanagi, LOICZ Biogeochemical modeling guidelines, in LOICZ Reports and Studies: N. 5, 1996.
    [29] J. Groot and W. Rossing, Model-aided learning for adaptive management of natural resources: an evolutionary design perspective, Methods in Ecology and Evolution, 2 (2011), 643-650.  doi: 10.1111/j.2041-210X.2011.00114.x.
    [30] H. HuB. Fu and Z. Zheng, SAORES: a spatially explicit assessment and optimization tool for regional ecosystem services, Landscape Ecology, 30 (2015), 547-560.  doi: 10.1007/s10980-014-0126-8.
    [31] Y. Jeje, Southern Alberta Landscapes: Meeting the Challenges Ahead, Export coefficients for total phosphorus, total nitrogen and total suspended solids in the Southern Alberta region. A review of literature, in Regional Environmental Management, Canada, 2006.
    [32] E. JeppensenB. KronvangM. MeerhoffM. SndergaardK. HansenH. AndersenT. LauridsenL. LiboriussenM. BekliogluA. Özen and J. Olesen, Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations, Journal of Environmental Quality, 38 (2009), 1930-1941. 
    [33] J. LangemeyerE. Gómez-BaggethunD. HaaseS. Scheuer and T. Elmqvist, Bridging the gap between ecosystem service assessment and land-use planning through multi-criteria decision analysis (MCDA), Environmental Science & Policy, 62 (2016), 45-56.  doi: 10.1016/j.envsci.2016.02.013.
    [34] S. Lovell and D. Johnston, Creating multifunctional landscapes: How can the field of ecology inform the design of the landscape?, Frontiers in Ecology and the Environment, 7 (2009), 212-220. 
    [35] F. Marston, W. Young and R. Davids, Nutrient Generation Rates Data Book. CMSS CSIRO, 2nd edition, 1995.
    [36] E. MeerhoffL. Rodríguez-GallegoL. GiménezP. Muniz and D. Conde, Spatial patterns of macrofaunal community structure in coastal lagoons of Uruguay, Marine Ecology Progress Series, 492 (2013), 97-110.  doi: 10.3354/meps10472.
    [37] M.-M. MemmahF. LescourretX. Yao and C. Lavigne, Metaheuristics for agricultural land use optimization. A review, Agronomy for Sustainable Development, 35 (2015), 975-998.  doi: 10.1007/s13593-015-0303-4.
    [38] A. MoilanenA. FrancoR. EarlyR. FoxB. Wintle and C. Thomas, Prioritising multiple use landscapes for conservation: Methods for large multi species planning problems, Proceedings of the Royal Society B, 272 (2005), 1885-1891. 
    [39] A. Moilanen, Two paths to a suboptimal solution - once more about optimality in reserve selection, Biological Conservation, 141 (2008), 1919-1923.  doi: 10.1016/j.biocon.2008.04.018.
    [40] A. Molianen, F. Pouzols, L. Meller, V. Veach, A. Arponen, J. Leppanen and H. Kujala, Spatial Conservation Planning Methods and Software. ZONATION. Version 4, User Manual. C-BIG Conservation Biology Informatics Group, University of Helsinki, Finland, 2004–2014.
    [41] B. MossS. KostenM. MeerhoffR. BattarbeeE. Jeppensen and N. Mazzeo, Allied attack: Climate change and eutrophication, Inland Waters, 1 (2011), 101-105.  doi: 10.5268/IW-1.2.359.
    [42] M. NinA. SoutulloL. Rodríguez-Gallego and E. Di Minin, Ecosystem services-based land planning for environmental impact avoidance, Ecosystem Services, 17 (2016), 172-184.  doi: 10.1016/j.ecoser.2015.12.009.
    [43] I. NoijM. HeinenH. HeesmansJ. Thissen and P. Groenendijk, Effectiveness of buffer strips without added fertilizer to reduce phosphorus loads from flat fields to surface waters, Soil Use and Management, 29 (2013), 162-174.  doi: 10.1111/j.1475-2743.2012.00443.x.
    [44] P. O'Farrell and An derson, Sustainable multifunctional landscapes: A review to implementation, Current Opinion in Environmental Sustainability, 2 (2010), 59-65.  doi: 10.1016/j.cosust.2010.02.005.
    [45] E. OstromE. BurgerC. FieldR. Norgaard and D. Policansky, Revisiting the Commons: Local lessons, global challenges, Science, 284 (1999), 278-282. 
    [46] H. Paerl and J. Huisman, Blooms like it hot, Science, 320 (2008), 57-58. 
    [47] C. Papadimitriou and K. Steiglitz, Combinatorial Optimization: Algorithms and Complexity, Corrected reprint of the 1982 original. Dover Publications, Inc., Mineola, NY, 1998.
    [48] M. Partidario and W. Sheate, Knowledge brokerage - potential for increased capacities and shared power in impact assessment, Environmental Impact Assessment Review, 39 (2013), 26-36.  doi: 10.1016/j.eiar.2012.02.002.
    [49] J. Petts (ed.), Handbook of Environmental Impact Assessment, Vol I, Wiley-Blackwell, 1994.
    [50] V. PicassoP. ModernelG. Becoña GL. SalvoL. Gutiérrez and L. Astigarraga, Sustainability of meat production beyond carbon footprint: A synthesis of case studies from grazing systems in Uruguay, Meat Science, 98 (2014), 346-354.  doi: 10.1016/j.meatsci.2014.07.005.
    [51] K. Reckhow, M. Beaulac and J. Simpson, Modeling Phosphorus Loading and Lake Response Under Uncertainty: A Manual and Compilation of Export Coefficients, U.S. EPA, Washington, DC. EPA 440/5-80-011, 1980.
    [52] L. Rodríguez-GallegoE. MeerhoffJ. Clemente and D. Conde, Can ephemeral proliferations of submerged macrophytes influence zoobenthos and water quality in coastal lagoons?, Hydrobiologia, 646 (2010), 253-269. 
    [53] L. Rodríguez-GallegoM. Achkar and D. Conde, Land Suitability Assessment in the Catchment Area of Four Southwestern Atlantic Coastal Lagoons: Multicriteria and Optimization Modeling, Environmental Management, 50 (2012), 140-152. 
    [54] L. Rodríguez-GallegoV. SabajS. MasciadriC. KrukR. Arocena and D. Conde, Salinity as a Major Driver for Submerged Aquatic Vegetation in Coastal Lagoons: a Multi-Year Analysis in the Subtropical Laguna de Rocha, Estuaries and Coasts, 38 (2015), 451-465. 
    [55] L. Rodríguez-GallegoM. AchkarO. DefeoL. VidalE. Meerhoff and D. Conde, Effects of land use changes on eutrophication indicators in five coastal lagoons of the Southwestern Atlantic Ocean, Estuaries, Coasts and Shelf Sciencies, 188 (2017), 116-126. 
    [56] S. Ryding and W. Rast, El Control de la Eutrofizacin en Lagos y Pantanos, Ediciones Pirmide, Madrid, 1992.
    [57] I. Santé-RiveiraM. Boullón-MagánR. Crecente-Maseda and D. Miranda-Barrós, Algorithm based on simulated annealing for land-use allocation, Computers & Geosciences, 34 (2008), 259-268. 
    [58] M. SchefferS. CarpenterJ. FoleyC. Folkes and B. Walker, Catastrophic shifts in ecosystems, Nature, 413 (2001), 591-596.  doi: 10.1038/35098000.
    [59] A. SeguraD. CalliariC. KrukD. CondeS. Bonilla S and H. Fort, Emergent neutrality dives phytoplankton species coexistence, Proceedings of the Royal Society B, Biological Science, 278 (2011), 2355-2361. 
    [60] A. SharpleyS. ChapraR. WedepholJ. SimsT. Daniel and K. Reddy, Managing Agricultural Phosphorus for Protection of Surface Waters; Issues and options, Journal of Environmental Quality, 23 (1994), 437-451.  doi: 10.2134/jeq1994.00472425002300030006x.
    [61] A. Sharpley, T. Daniel, G. Gibson, L. Bundy, M. Cabrera, T. Sims, R. Stevens, J. Lemunyon, P. Kleinman and R. Parry, Best Management Practices To Minimize Agricultural Phosphorus Impacts on Water Quality, United States Department of Agriculture, Agricultural Research Service, 2006.
    [62] X. She-Yang, Engineering Optimization. An Introduction with Metaheuristic Applications, Wiley, 2010.
    [63] L. SilveiraP. GamazoJ. Alonso and L. Martínez, Effects of afforestation on groundwater recharge and water budgets in the western region of Uruguay, Hydrological Processes, 30 (2016), 3596-3608.  doi: 10.1002/hyp.10952.
    [64] V. Smith and D. Schindler, Eutrophication science: Where do we go from here?, Trends in Ecology and Evolution, 24 (2009), 201-207.  doi: 10.1016/j.tree.2008.11.009.
    [65] E. ViglizzoF. FrankL. CarreñoE. JobbágyH. PereyraJ. ClattD. Pincén and M. Ricard, Ecological and environmental footprint of 50 years of agricultural expansion in Argentina, Global Change Biology, 17 (2011), 959-973.  doi: 10.1111/j.1365-2486.2010.02293.x.
    [66] C. VorosmartyM. MeybeckB. FeketeK. SharmaP. Green and P. Syvitski, Anthropogenic sediment retention: Major global impact from registered river impoundments, Global and Planetary Change, 39 (2003), 169-190.  doi: 10.1016/S0921-8181(03)00023-7.
    [67] N. ZhangM. Wang and N. Wang, Precision agriculture - a worldwide overview, Computers and Electronics in Agriculture, 36 (2002), 113-132.  doi: 10.1016/S0168-1699(02)00096-0.
  • 加载中

Figures(7)

Tables(3)

SHARE

Article Metrics

HTML views(4020) PDF downloads(465) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return