\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Cooperative dynamic advertising via state-dependent payoff weights

This work was partially supported by the German Research Foundation (DFG) within the Collaborative Research Center "On-The-Fly Computing" (SFB 901) under the project number 160364472-SFB901.

Abstract / Introduction Full Text(HTML) Figure(2) Related Papers Cited by
  • We consider an infinite horizon cooperative advertising differential game with nontransferable utility (NTU). The values of each firm are parametrized by a common discount rate and advertising costs. First we characterize the set of efficient solutions with a constant payoff weight. We show that there does not exist a constant weight that supports an agreeable cooperative solution. Then we consider a linear state-dependent payoff weight and derive an agreeable cooperative solution for a restricted parameter space.

    Mathematics Subject Classification: Primary: 91A12, 91A23; Secondary: 58E17, 91A05.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Plot of $h(\kappa) - 1 + \ln(2)$ for $\kappa \in (0, \overline \kappa]$

    Figure 2.  (Non) cooperative strategies and values
    Note: For $x \in [0, 1]$ and $\mathit{\boldsymbol{\rho}} = (\frac{3}{4}, 1)$ the figure illustrates the noncooperative $\phi_i(x)$ and cooperative strategies $\sigma_i(x)$ (top panels) as well as noncooperative $D_i(x)$ and cooperative values $A_i(x)$ (bottom panels).

  • [1] M. R. CaputoFoundations of Dynamic Economic Analysis, Cambridge University Press, 2005.  doi: 10.1017/CBO9780511806827.
    [2] E. J. DocknerS. JørgensenN. V. Long and  G. SorgerDifferential Games in Economics and Management Science, Cambridge University Press, 2000.  doi: 10.1017/CBO9780511805127.
    [3] A. de-PazJ. Marín-Solano and J. Navas, Time-consistent equilibria in common access resource games with asymmetric players under partial cooperation, Environmental Modeling & Assessment, 18 (2013), 171-184.  doi: 10.1007/s10666-012-9339-x.
    [4] S. Jørgensen and G. Zaccour, Time consistency in cooperative differential games, in Decision & Control in Management Science (ed. G. Zaccour), Springer, (2002), 349–366.
    [5] S. JørgensenG. Martín-Herrán and G. Zaccour, Agreeability and time consistency in linear-state differential games, Journal of Optimization Theory and Applications, 119 (2003), 49-63.  doi: 10.1023/B:JOTA.0000005040.78280.a6.
    [6] S. JørgensenG. Martín-Herrán and G. Zaccour, Sustainability of cooperation over time in linear-quadratic differential games, International Game Theory Review, 7 (2005), 395-406.  doi: 10.1142/S0219198905000600.
    [7] V. Kaitala and M. Pohjola, Economic development and agreeable redistribution in capitalism: Efficient game equilibria in a two-class neo-classical growth model, International Economic Review, 31 (1990), 421-438.  doi: 10.2307/2526848.
    [8] J. Marín-Solano, Time-consistent equilibria in a differential game model with time inconsistent preferences and partial cooperation, in Dynamic Games in Economics (eds. J. Haunschmied, V. Veliov and S. Wrzaczek), Springer, 16 (2014), 219–238. doi: 10.1007/978-3-642-54248-0_11.
    [9] J. Marín-Solano, Group inefficiency in a common property resource game with asymmetric players, Economics Letters, 136 (2015), 214-217.  doi: 10.1016/j.econlet.2015.10.002.
    [10] L. A. Petrosjan, Agreeable solutions in differential games, International Journal of Mathematics, Game Theory and Algebra, 7 (1998), 165-177. 
    [11] L. A. Petrosyan and G. Zaccour, Cooperative differential games with transferable payoffs, in Handbook of Dynamic Game Theory (eds. T. Başar and G. Zaccour), Springer, (2018), 595–632. doi: 10.1007/978-3-319-44374-4_12.
    [12] A. Prasad and S. P. Sethi, Competitive advertising under uncertainty: A stochastic differential game approach, Journal of Optimization Theory and Applications, 123 (2004), 163-185.  doi: 10.1023/B:JOTA.0000043996.62867.20.
    [13] S. P. Sethi, Deterministic and stochastic optimization of a dynamic advertising model, Optimal Control Applications and Methods, 4 (1983), 179-184.  doi: 10.1002/oca.4660040207.
    [14] G. Sorger, Competitive dynamic advertising: A modification of the case game, Journal of Economic Dynamics and Control, 13 (1989), 55-80.  doi: 10.1016/0165-1889(89)90011-0.
    [15] G. Sorger, Recursive Nash bargaining over a productive asset, Journal of Economic Dynamics and Control, 30 (2006), 2637-2659.  doi: 10.1016/j.jedc.2005.08.005.
    [16] D. W. K. Yeung and L. A. Petrosyan, Subgame consistent solutions of a cooperative stochastic differential game with nontransferable payoffs, Journal of Optimization Theory and Applications, 124 (2005), 701-724.  doi: 10.1007/s10957-004-1181-0.
    [17] D. W. K. Yeung, L. A. Petrosyan and P. M. Yeung, Subgame consistent solutions for a class of cooperative stochastic differential games with nontransferable payoffs, in Advances in Dynamic Game Theory. Annals of the International Society of Dynamic Games 9 (eds. S. Jørgensen, M. Quincampoix and T. L. Vincent), Birkhäuser, (2007), 153–170. doi: 10.1007/978-0-8176-4553-3_8.
    [18] D. W. K. Yeung and L. A. Petrosyan, Subgame consistent cooperative solution for NTU dynamic games via variable weights, Automatica, 59 (2015), 84-89.  doi: 10.1016/j.automatica.2015.01.030.
    [19] D. W. K. Yeung and L. A. Petrosyan, Nontransferable utility cooperative dynamic games, in Handbook of Dynamic Game Theory (eds. T. Başar and G. Zaccour), Springer, (2018), 633–670.
    [20] G. Zaccour, Time consistency in cooperative differential games: A tutorial, INFOR: Information Systems and Operational Research, 46 (2008), 81-92.  doi: 10.3138/infor.46.1.81.
  • 加载中

Figures(2)

SHARE

Article Metrics

HTML views(5748) PDF downloads(206) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return