-
Previous Article
From mean field games to the best reply strategy in a stochastic framework
- JDG Home
- This Issue
-
Next Article
Asymptotically optimal strategies in repeated games with incomplete information and vanishing weights
Games for Pucci's maximal operators
1. | Departamento de Matemática, FCEyN UBA, Ciudad Universitaria, Pab 1 (1428), Buenos Aires, Argentina |
2. | Department of Mathematics, University of Pittsburgh, Pittsburgh, PA 15260, USA |
In this paper we introduce a game whose value functions converge (as a parameter that measures the size of the steps goes to zero) uniformly to solutions to the second order Pucci maximal operators.
References:
[1] |
I. Birindelli, G. Galise Giulio and F. Leoni,
Lioville theorems for a family of very degenerate elliptic non lineal operators, Nonlinear Anal., 161 (2017), 198-211.
doi: 10.1016/j.na.2017.06.002. |
[2] |
I. Birindelli, G. Galise and I. Ishii,
A family of degenerate elliptic operators: Maximum principle and its consequences, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 417-441.
doi: 10.1016/j.anihpc.2017.05.003. |
[3] |
I. Capuzzo Dolcetta, G. Leoni and L. Vitolo,
On the inequality $F(x, D^2u) \geq f(u) +g(u)|Du|^q$, Math. Ann., 365 (2016), 423-448.
doi: 10.1007/s00208-015-1280-2. |
[4] |
M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1–67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[5] |
F. R. Harvey and H. B. Jr. Lawson,
Dirichlet duality and the nonlinear Dirichlet problem, Comm. Pure Appl. Math., 62 (2009), 396-443.
doi: 10.1002/cpa.20265. |
[6] |
F. R. Harvey and H. B. Jr. Lawson,
$p-$convexity, $p-$plurisubharmonicity and the Levi problem, Indiana Univ. Math. J., 62 (2013), 149-169.
doi: 10.1512/iumj.2013.62.4886. |
[7] |
P. Lindqvist and J. J. Manfredi,
On the mean value property for the $p-$Laplace equation in the plane, Proc. Amer. Math. Soc., 144 (2016), 143-149.
doi: 10.1090/proc/12675. |
[8] |
J. J. Manfredi, M. Parviainen and J. D. Rossi,
An asymptotic mean value characterization for p-harmonic functions, Proc. Amer. Math. Soc., 138 (2010), 881-889.
doi: 10.1090/S0002-9939-09-10183-1. |
[9] |
J. J. Manfredi, M. Parviainen and J. D. Rossi,
Dynamic programming principle for tug-of-war games with noise, ESAIM, Control, Opt. Calc. Var., 18 (2012), 81-90.
doi: 10.1051/cocv/2010046. |
[10] |
J. J. Manfredi, M. Parviainen and J. D. Rossi,
On the definition and properties of p-harmonious functions, Ann. Scuola Nor. Sup. Pisa, 11 (2012), 215-241.
|
[11] |
J. P. Sha,
Handlebodies and p-convexity, J. Differential Geometry, 25 (1987), 353-361.
doi: 10.4310/jdg/1214440980. |
[12] |
H. Wu,
Manifolds of partially positive curvature, Indiana Univ. Math. J., 36 (1987), 525-548.
doi: 10.1512/iumj.1987.36.36029. |
[13] |
Q. Liu and A. Schikorra,
General existence of solutions to dynamic programming principle, Commun. Pure Appl. Anal., 14 (2015), 167-184.
doi: 10.3934/cpaa.2015.14.167. |
show all references
References:
[1] |
I. Birindelli, G. Galise Giulio and F. Leoni,
Lioville theorems for a family of very degenerate elliptic non lineal operators, Nonlinear Anal., 161 (2017), 198-211.
doi: 10.1016/j.na.2017.06.002. |
[2] |
I. Birindelli, G. Galise and I. Ishii,
A family of degenerate elliptic operators: Maximum principle and its consequences, Ann. Inst. H. Poincaré Anal. Non Linéaire, 35 (2018), 417-441.
doi: 10.1016/j.anihpc.2017.05.003. |
[3] |
I. Capuzzo Dolcetta, G. Leoni and L. Vitolo,
On the inequality $F(x, D^2u) \geq f(u) +g(u)|Du|^q$, Math. Ann., 365 (2016), 423-448.
doi: 10.1007/s00208-015-1280-2. |
[4] |
M. G. Crandall, H. Ishii and P. L. Lions, User's guide to viscosity solutions of second order partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1–67.
doi: 10.1090/S0273-0979-1992-00266-5. |
[5] |
F. R. Harvey and H. B. Jr. Lawson,
Dirichlet duality and the nonlinear Dirichlet problem, Comm. Pure Appl. Math., 62 (2009), 396-443.
doi: 10.1002/cpa.20265. |
[6] |
F. R. Harvey and H. B. Jr. Lawson,
$p-$convexity, $p-$plurisubharmonicity and the Levi problem, Indiana Univ. Math. J., 62 (2013), 149-169.
doi: 10.1512/iumj.2013.62.4886. |
[7] |
P. Lindqvist and J. J. Manfredi,
On the mean value property for the $p-$Laplace equation in the plane, Proc. Amer. Math. Soc., 144 (2016), 143-149.
doi: 10.1090/proc/12675. |
[8] |
J. J. Manfredi, M. Parviainen and J. D. Rossi,
An asymptotic mean value characterization for p-harmonic functions, Proc. Amer. Math. Soc., 138 (2010), 881-889.
doi: 10.1090/S0002-9939-09-10183-1. |
[9] |
J. J. Manfredi, M. Parviainen and J. D. Rossi,
Dynamic programming principle for tug-of-war games with noise, ESAIM, Control, Opt. Calc. Var., 18 (2012), 81-90.
doi: 10.1051/cocv/2010046. |
[10] |
J. J. Manfredi, M. Parviainen and J. D. Rossi,
On the definition and properties of p-harmonious functions, Ann. Scuola Nor. Sup. Pisa, 11 (2012), 215-241.
|
[11] |
J. P. Sha,
Handlebodies and p-convexity, J. Differential Geometry, 25 (1987), 353-361.
doi: 10.4310/jdg/1214440980. |
[12] |
H. Wu,
Manifolds of partially positive curvature, Indiana Univ. Math. J., 36 (1987), 525-548.
doi: 10.1512/iumj.1987.36.36029. |
[13] |
Q. Liu and A. Schikorra,
General existence of solutions to dynamic programming principle, Commun. Pure Appl. Anal., 14 (2015), 167-184.
doi: 10.3934/cpaa.2015.14.167. |
[1] |
Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete and Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004 |
[2] |
Eduardo Espinosa-Avila, Pablo Padilla Longoria, Francisco Hernández-Quiroz. Game theory and dynamic programming in alternate games. Journal of Dynamics and Games, 2017, 4 (3) : 205-216. doi: 10.3934/jdg.2017013 |
[3] |
Francesca Da Lio. Remarks on the strong maximum principle for viscosity solutions to fully nonlinear parabolic equations. Communications on Pure and Applied Analysis, 2004, 3 (3) : 395-415. doi: 10.3934/cpaa.2004.3.395 |
[4] |
Qing Liu, Armin Schikorra. General existence of solutions to dynamic programming equations. Communications on Pure and Applied Analysis, 2015, 14 (1) : 167-184. doi: 10.3934/cpaa.2015.14.167 |
[5] |
Jeongmin Han. Local Lipschitz regularity for functions satisfying a time-dependent dynamic programming principle. Communications on Pure and Applied Analysis, 2020, 19 (5) : 2617-2640. doi: 10.3934/cpaa.2020114 |
[6] |
Guy Barles, Ariela Briani, Emmanuel Trélat. Value function for regional control problems via dynamic programming and Pontryagin maximum principle. Mathematical Control and Related Fields, 2018, 8 (3&4) : 509-533. doi: 10.3934/mcrf.2018021 |
[7] |
Martino Bardi, Shigeaki Koike, Pierpaolo Soravia. Pursuit-evasion games with state constraints: dynamic programming and discrete-time approximations. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 361-380. doi: 10.3934/dcds.2000.6.361 |
[8] |
Huseyin Coskun. Nonlinear decomposition principle and fundamental matrix solutions for dynamic compartmental systems. Discrete and Continuous Dynamical Systems - B, 2019, 24 (12) : 6553-6605. doi: 10.3934/dcdsb.2019155 |
[9] |
Jagmohan Tyagi, Ram Baran Verma. Positive solution to extremal Pucci's equations with singular and gradient nonlinearity. Discrete and Continuous Dynamical Systems, 2019, 39 (5) : 2637-2659. doi: 10.3934/dcds.2019110 |
[10] |
Alexander J. Zaslavski. Structure of approximate solutions of dynamic continuous time zero-sum games. Journal of Dynamics and Games, 2014, 1 (1) : 153-179. doi: 10.3934/jdg.2014.1.153 |
[11] |
Zhen Lei, Yi Zhou. BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete and Continuous Dynamical Systems, 2009, 25 (2) : 575-583. doi: 10.3934/dcds.2009.25.575 |
[12] |
Shigeaki Koike, Andrzej Świech. Local maximum principle for $L^p$-viscosity solutions of fully nonlinear elliptic PDEs with unbounded coefficients. Communications on Pure and Applied Analysis, 2012, 11 (5) : 1897-1910. doi: 10.3934/cpaa.2012.11.1897 |
[13] |
Alexander J. Zaslavski. Turnpike properties of approximate solutions of dynamic discrete time zero-sum games. Journal of Dynamics and Games, 2014, 1 (2) : 299-330. doi: 10.3934/jdg.2014.1.299 |
[14] |
Andrzej Nowakowski, Jan Sokolowski. On dual dynamic programming in shape control. Communications on Pure and Applied Analysis, 2012, 11 (6) : 2473-2485. doi: 10.3934/cpaa.2012.11.2473 |
[15] |
Jérôme Renault. General limit value in dynamic programming. Journal of Dynamics and Games, 2014, 1 (3) : 471-484. doi: 10.3934/jdg.2014.1.471 |
[16] |
Giuseppe Capobianco, Tom Winandy, Simon R. Eugster. The principle of virtual work and Hamilton's principle on Galilean manifolds. Journal of Geometric Mechanics, 2021, 13 (2) : 167-193. doi: 10.3934/jgm.2021002 |
[17] |
Huaiqiang Yu, Bin Liu. Pontryagin's principle for local solutions of optimal control governed by the 2D Navier-Stokes equations with mixed control-state constraints. Mathematical Control and Related Fields, 2012, 2 (1) : 61-80. doi: 10.3934/mcrf.2012.2.61 |
[18] |
Yu Chen. Delegation principle for multi-agency games under ex post equilibrium. Journal of Dynamics and Games, 2018, 5 (4) : 311-329. doi: 10.3934/jdg.2018019 |
[19] |
Torsten Lindström. Discrete models and Fisher's maximum principle in ecology. Conference Publications, 2003, 2003 (Special) : 571-579. doi: 10.3934/proc.2003.2003.571 |
[20] |
Oliver Junge, Alex Schreiber. Dynamic programming using radial basis functions. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 4439-4453. doi: 10.3934/dcds.2015.35.4439 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]