\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Markovian strategies for piecewise deterministic differential games with continuous and impulse controls

Abstract Full Text(HTML) Figure(6) Related Papers Cited by
  • This paper is concerned with the Markovian feedback strategies of piecewise deterministic differential games and their applications to business and management decision-making problems that involve multiple agents and continuous and impulse controls. For a class of piecewise deterministic differential games in finite or infinite horizons we formulate conditions for the value functions in the form of quasi-variational inequalities, prove a verification theorem, and derive a criterion for the Markovian regime change in certain case. These results are applied to a technology adoption problem that involves multiple companies engaged in extraction of an exhaustible resource with different technologies. Using the model proposed by Long et al in [16], we show the existence of a pure Markovian strategy and develop an algorithm for computing the solutions.

    Mathematics Subject Classification: Primary: 91A80, 91A23; Secondary: 91B06.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 3.1.  Possible strategies with parameter values given by (3.15)

    Figure 3.2.  Extraction and consumption rates using parameters in (3.15)

    Figure 3.3.  Possible strategies with $ \gamma^2 = 1.6 $ and other parameter values given by (3.15)

    Figure 4.  Extraction and consumption rates when $ \gamma ^{2} $ is changed to 1.6

    Figure 3.5.  Extraction and consumption rates. The blue and red curves on the right are the consumption rates of Companies 1 and 2, respectively

    Figure 3.6.  Extraction and consumption rates when $ \gamma _{2}^{2} $ is changed to 1.2. The blue and red curves on the right are the consumption rates of Companies 1 and 2, respectively

  • [1] R. Amit, Petroleum reservoir exploitation: Switching from primary to secondary recovery, Operations Research, 34 (1986), 534-549.  doi: 10.1287/opre.34.4.534.
    [2] T. Başar and A. Haurie, Feedback equilibria in differential games with structural and modal uncertainties, Advances in Large Scale Systems, New York, 1 (1984), 163–201.
    [3] R. BoucekkineA. Pommeret and F. Prieur, Optimal regime switching and threshold effects, ournal of Economic Dynamics and Control, 37 (2013), 2979-2997.  doi: 10.1016/j.jedc.2013.08.008.
    [4] R. BoucekkineF. Prieur and K. Puzon, On the timing of political regime changes in resource-dependent economies, European Economic Review, 85 (2016), 188-207.  doi: 10.1016/j.euroecorev.2016.02.016.
    [5] R. BoucekkineC. Saglam and T. Vallée., Technology adoption under embodiment: A two-stage optimal control approach, Macroeconomic Dynamics, 8 (2004), 250-271.  doi: 10.1017/S1365100503030062.
    [6] M. Breton and A. Haurie, Two-layer piecewise deterministic games, In Proceedings of the 28th IEEE Conference on Decision and Control, New York, 1989,198–200. doi: 10.1109/CDC.1989.70102.
    [7] E. J. Dockner, S. J$\phi $rgensen, N. V. Long and G. Sorger, Differential Games in Economics and Management Science, Cambridge, Cambridge University Press, 2000. doi: 10.1017/CBO9780511805127.
    [8] T. L. Friesz, Dynamic Optimization and Differential Games, Springer, New York Dordrecht Heidelberg London, 2010.
    [9] D. Fudenberg and J. Tirole, Preemption and rent equalization in the adoption of new technology, Review of Economic Studies, 52 (1985), 383-401.  doi: 10.2307/2297660.
    [10] M. Ghosh and S. Marcus, Stochastic differential games with multiple modes, Stochastic Analysis and Applications, 16 (1998), 91-105.  doi: 10.1080/07362999808809519.
    [11] J. Haunschmied, V. M. Veliov and S. Wrzaczek, editors, Dynamic Games in Economics, volume 16 of Dynamic Modeling and Econometrics in Economics and Finance, Springer-Verlag, Berlin Heidelberg, 2014. doi: 10.1007/978-3-642-54248-0.
    [12] A. Haurie, Piecewise deterministic and piecewise diffusion differential games with modal uncertainties, Decision Processes in Economics, Springer, Berlin, 353 (1991), 107–120. doi: 10.1007/978-3-642-45686-2_10.
    [13] A. Haurie, From repeated to differential games: How time and uncertainty pervade the theory of games, Frontiers of Game Theory, MIT Press, Cambridge, MA, 1993,165–194.
    [14] A. Haurie, S. Muto, L. A. Petrosjan and T. E. S. Raghavan, editors, Advances in Dynamic Games–Applications to Economics, Management Science, Engineering, and Environmental Management, volume 8 of Annals of the International Society of Dynamic Games, Birkhäuser, Boston Basel Berlin, 2006. doi: 10.1007/0-8176-4501-2.
    [15] S. J${\phi}$rgensen and G. Zaccour, Developments in differential game theory and numerical methods: Economic and management applications, Computational Management Science, 4 (2007), 159-181.  doi: 10.1007/s10287-006-0032-x.
    [16] N. V. LongF. PrieurM. Tidball and K. Puzon, Piecewise closed-loop equilibria in differential games with regime switching strategies, J. Econom. Dynam. Control, 76 (2017), 264-284.  doi: 10.1016/j.jedc.2017.01.008.
    [17] M. Makris, Necessary conditions for infinite-horizon discounted two-stage optimal control problems, J. Econom. Dynam. Control, 25 (2001), 1935-1950.  doi: 10.1016/S0165-1889(00)00009-9.
    [18] F. E. Ouardighi and K. Kogan, editors, Models and Methods in Economics and Management Science–Essays in Honor of Charles S. Tapiero, volume 198 of International Series in Operations Research and Management Science, Springer, Cham Heidelberg New York Dordrecht London, 2014. doi: 10.1007/978-3-319-00669-7.
    [19] J. F. Reinganum, On the diffusion of new technology: A game theoretic approach, Review of Economic Studies, 48 (1981), 395-405.  doi: 10.2307/2297153.
    [20] C. Saglam, Optimal pattern of technology adoptions under embodiment: A multi-stage optimal control approach, Optim. Control Appl. Meth., 32 (2011), 574-586.  doi: 10.1002/oca.960.
    [21] K. Tomiyama, Two-stage optimal control problems and optimality conditions, ournal of Economic Dynamics and Control, 9 (1985), 317-337.  doi: 10.1016/0165-1889(85)90010-7.
    [22] K. Tomiyama and R. Rossana, Two-stage optimal control problems with an explicit switch point dependence–optimality criteria and an example of delivery lags and investment, J. Econom. Dynam. Control, 13 (1989), 319-337.  doi: 10.1016/0165-1889(89)90027-4.
    [23] S. Valente, Endogenous growth, backstop technology adoption, and optimal jumps, Macroeconomic Dynamics, 15 (2011), 293-325. 
  • 加载中

Figures(6)

SHARE

Article Metrics

HTML views(712) PDF downloads(311) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return