• Previous Article
    A regularization interpretation of the proximal point method for weakly convex functions
  • JDG Home
  • This Issue
  • Next Article
    Game theoretical modelling of a dynamically evolving network Ⅱ: Target sequences of score 1
January  2020, 7(1): 65-77. doi: 10.3934/jdg.2020004

Market games and walrasian equilibria

1. 

Universidad de Vigo, Spain

2. 

Universidad de Salamanca, Spain

* Corresponding author: Carlos Hervés-Beloso

Received  May 2019 Published  December 2019

Fund Project: This work is partially supported by Research Grants SA049G19 (Junta de Castilla y León), ECO2016-75712-P (Ministerio de Economía y Competitividad) and ECOBAS (Xunta de Galicia).

In this work, we recapitulate and compare the market game approaches provided by Shapley and Shubik [35] and Schmeidler [33]. We provide some extensions to economies with infinitely many commodities and point out some applications and lines for future research.

Citation: Carlos Hervés-Beloso, Emma Moreno-García. Market games and walrasian equilibria. Journal of Dynamics and Games, 2020, 7 (1) : 65-77. doi: 10.3934/jdg.2020004
References:
[1]

R. M. Anderson, An elementary core equivalence theorem, Econometrica, 46 (1978), 1483-1487.  doi: 10.2307/1913840.

[2]

R. M. Anderson, Core theory with strongly convex preferences, Econometrica, 49 (1981), 1457-1468.  doi: 10.2307/1911411.

[3]

R. M. Anderson, Strong core theorems with nonconvex preferences, Econometrica, 53 (1985), 1283-1294.  doi: 10.2307/1913208.

[4]

A. Araujo, Lack of Pareto optimal allocations in economies with infinitely many commodities: The need for impatience, Econometrica, 53 (1985), 455-461.  doi: 10.2307/1911245.

[5]

K. J. Arrow and G. Debreu, Existence of an equilibrium for a competitive economy, Econometrica, 22 (1954), 265-290.  doi: 10.2307/1907353.

[6]

K. J. Arrow and F. H. Hahn, General Competitive Analysis, Mathematical Economics Texts, No. 6. Holden-Day, Inc., San Francisco, Calif., Oliver & Boyd, Edinburgh, 1971.

[7]

R. J. Aumann, Markets with a continuum of traders, Econometrica, 32 (1964), 39-50.  doi: 10.2307/1913732.

[8]

J. Bertrand, Théorie mathématique de la richesse sociale, Journal de Savants, (1883), 499–508.

[9]

T. F. Bewley, Existence of equilibria in economies with infinitely many commodities, Journal of Economic Theory, 4 (1973), 514-540.  doi: 10.1016/0022-0531(72)90136-6.

[10]

A. Cournot, Recherches sur les Principes Mathématiques de la Théorie des Richesses, Researches into the Mathematical Principles of the Theory of Wealth. Macmillan, New York, 1897.

[11]

G. Debreu, A social equilibrium existence theorem, Proceedings of the National Academy of Sciences, 38 (1952), 886-893.  doi: 10.1073/pnas.38.10.886.

[12]

G. Debreu and H. Scarf, A limit theorem on the core of an economy, International Economic Review, 4 (1963), 235-246. 

[13]

E. Dierker, Gains and losses at core allocations, Journal of Mathematical Economics, 2 (1975), 119-128.  doi: 10.1016/0304-4068(75)90018-X.

[14]

P. Dubey, Price-quantity strategic market games, Econometrica, 50 (1982), 111-126.  doi: 10.2307/1912532.

[15]

P. Dubey and J. Geanakoplos, From Nash to Walras via Shapley-Shubik. Special issue on strategic market games, Journal of Mathematical Economics, 39 (2003), 391-400.  doi: 10.1016/S0304-4068(03)00012-0.

[16]

M. FaiasC. Hervés-Beloso and E. Moreno-García, Equilibrium price formation in markets with differentially informed agents, Economic Theory, 48 (2011), 205-218.  doi: 10.1007/s00199-010-0582-6.

[17]

M. FaiasE. Moreno-García and M. Wooders, A strategic market game approach for the private provision of public goods, Journal of Dynamics and Games, 1 (2014), 283-298.  doi: 10.3934/jdg.2014.1.283.

[18]

G. Fugarolas-Alvarez-UdeC. Hervés-BelosoE. Moreno-García and J. P. Torres-Martínez, A market game approach to differential information economies, Economic Theory, 38 (2009), 321-330.  doi: 10.1007/s00199-006-0170-y.

[19]

J. García-Cutrín and C. Hervés-Beloso, A discrete approach to continuum economies, Economic Theory, 3 (1993), 577-583.  doi: 10.1007/BF01209704.

[20]

G. Giraud, Strategic market games: An introduction, Journal of Mathematical Economics, 39 (2003), 355-375.  doi: 10.1016/S0304-4068(03)00049-1.

[21]

M. Greinecker and K. Podczeck, Core equivalence with differentiated commodities, Journal of Mathematical Economics, 73 (2017), 54-67.  doi: 10.1016/j.jmateco.2017.08.005.

[22]

C. Hervés-Beloso and H. del Valle-Inclán Cruces, Continuous preference orderings representable by utility functions, Journal of Economic Surveys, 33 (2019), 179-194. 

[23]

C. Hervés-BelosoE. Moreno-García and M. R. Páscoa, Manipulation-proof equilibrium in atomless economies with commodity differentiation, Economic Theory, 14 (1999), 545-563.  doi: 10.1007/s001990050339.

[24]

C. Hervés-Beloso and E. Moreno-García, Walrasian analysis via two-player games, Games and Economic Behaviour, 65 (2009), 220-233.  doi: 10.1016/j.geb.2007.12.001.

[25]

W. Hildenbrand, Cores and Equilibria of a Large Economy, Princeton Studies in Mathematical Economics, No. 5. Princeton University Press, Princeton, N.J., 1974.

[26]

L. Hurwicz, Outcome functions yielding Walrasian and Lindhal allocations at Nash equilibrium points, Review of Economic Studies, 46 (1979), 217-227.  doi: 10.2307/2297046.

[27]

M. A. Khan, Oligopoly in markets with a continuum of traders: An asymptotic interpretation, Journal of Economic Theory, 12 (1976), 273-97.  doi: 10.1016/0022-0531(76)90078-8.

[28]

E. Moreno-García, Strategic equilibria with partially consumable withholdings, International Game Theory Review, 8 (2006), 533-553.  doi: 10.1142/S0219198906001090.

[29]

J. F. Nash, Equilibrium points in n-person games, Proceedings of the National Academy of Sciences, 36 (1950), 48-49.  doi: 10.1073/pnas.36.1.48.

[30]

J. Ostroy and W. Zame, Nonatomic economies and the boundaries of perfect competition, Econometrica, 62 (1994)), 593-633. 

[31]

K. Podczeck, On core-Walras equivalence in Banach lattices, Journal of Mathematical Economics, 41 (2005), 764-792.  doi: 10.1016/j.jmateco.2004.04.001.

[32]

D. J. Roberts and A. Postlewaite, : The incentives for price-taking behavior in large exchange economies, Econometrica, 44 (1976), 115–127. doi: 10.2307/1911385.

[33]

D. Schmeidler, Walrasian analysis via strategic outcome functions, Econometrica, 48 (1980), 1585-1593.  doi: 10.2307/1911923.

[34]

L. S. Shapley, Non-cooperative general exchange, Theory of Measure of Economic Externalities, (1976).

[35]

L. Shapley and M. Shubik, Trade using one commodity as a means of payment, Journal of Political Economy, 85 (1977), 937-968. 

[36]

M. Shubik, Commodity money, oligopoly, credit and bankruptcy in a general equilibrium model, Western Economic Journal, 11 (1973), 24-38. 

[37]

R. Tourky and N. C. Yannelis, Markets with many more agents than commodities: Aumann's "hidden" assumption, Journal of Economic Theory, 101 (2001), 189-221.  doi: 10.1006/jeth.2000.2705.

[38]

M. H. Wooders, Equivalence of games and markets, Econometrica, 62 (1994), 1141-1160.  doi: 10.2307/2951510.

show all references

References:
[1]

R. M. Anderson, An elementary core equivalence theorem, Econometrica, 46 (1978), 1483-1487.  doi: 10.2307/1913840.

[2]

R. M. Anderson, Core theory with strongly convex preferences, Econometrica, 49 (1981), 1457-1468.  doi: 10.2307/1911411.

[3]

R. M. Anderson, Strong core theorems with nonconvex preferences, Econometrica, 53 (1985), 1283-1294.  doi: 10.2307/1913208.

[4]

A. Araujo, Lack of Pareto optimal allocations in economies with infinitely many commodities: The need for impatience, Econometrica, 53 (1985), 455-461.  doi: 10.2307/1911245.

[5]

K. J. Arrow and G. Debreu, Existence of an equilibrium for a competitive economy, Econometrica, 22 (1954), 265-290.  doi: 10.2307/1907353.

[6]

K. J. Arrow and F. H. Hahn, General Competitive Analysis, Mathematical Economics Texts, No. 6. Holden-Day, Inc., San Francisco, Calif., Oliver & Boyd, Edinburgh, 1971.

[7]

R. J. Aumann, Markets with a continuum of traders, Econometrica, 32 (1964), 39-50.  doi: 10.2307/1913732.

[8]

J. Bertrand, Théorie mathématique de la richesse sociale, Journal de Savants, (1883), 499–508.

[9]

T. F. Bewley, Existence of equilibria in economies with infinitely many commodities, Journal of Economic Theory, 4 (1973), 514-540.  doi: 10.1016/0022-0531(72)90136-6.

[10]

A. Cournot, Recherches sur les Principes Mathématiques de la Théorie des Richesses, Researches into the Mathematical Principles of the Theory of Wealth. Macmillan, New York, 1897.

[11]

G. Debreu, A social equilibrium existence theorem, Proceedings of the National Academy of Sciences, 38 (1952), 886-893.  doi: 10.1073/pnas.38.10.886.

[12]

G. Debreu and H. Scarf, A limit theorem on the core of an economy, International Economic Review, 4 (1963), 235-246. 

[13]

E. Dierker, Gains and losses at core allocations, Journal of Mathematical Economics, 2 (1975), 119-128.  doi: 10.1016/0304-4068(75)90018-X.

[14]

P. Dubey, Price-quantity strategic market games, Econometrica, 50 (1982), 111-126.  doi: 10.2307/1912532.

[15]

P. Dubey and J. Geanakoplos, From Nash to Walras via Shapley-Shubik. Special issue on strategic market games, Journal of Mathematical Economics, 39 (2003), 391-400.  doi: 10.1016/S0304-4068(03)00012-0.

[16]

M. FaiasC. Hervés-Beloso and E. Moreno-García, Equilibrium price formation in markets with differentially informed agents, Economic Theory, 48 (2011), 205-218.  doi: 10.1007/s00199-010-0582-6.

[17]

M. FaiasE. Moreno-García and M. Wooders, A strategic market game approach for the private provision of public goods, Journal of Dynamics and Games, 1 (2014), 283-298.  doi: 10.3934/jdg.2014.1.283.

[18]

G. Fugarolas-Alvarez-UdeC. Hervés-BelosoE. Moreno-García and J. P. Torres-Martínez, A market game approach to differential information economies, Economic Theory, 38 (2009), 321-330.  doi: 10.1007/s00199-006-0170-y.

[19]

J. García-Cutrín and C. Hervés-Beloso, A discrete approach to continuum economies, Economic Theory, 3 (1993), 577-583.  doi: 10.1007/BF01209704.

[20]

G. Giraud, Strategic market games: An introduction, Journal of Mathematical Economics, 39 (2003), 355-375.  doi: 10.1016/S0304-4068(03)00049-1.

[21]

M. Greinecker and K. Podczeck, Core equivalence with differentiated commodities, Journal of Mathematical Economics, 73 (2017), 54-67.  doi: 10.1016/j.jmateco.2017.08.005.

[22]

C. Hervés-Beloso and H. del Valle-Inclán Cruces, Continuous preference orderings representable by utility functions, Journal of Economic Surveys, 33 (2019), 179-194. 

[23]

C. Hervés-BelosoE. Moreno-García and M. R. Páscoa, Manipulation-proof equilibrium in atomless economies with commodity differentiation, Economic Theory, 14 (1999), 545-563.  doi: 10.1007/s001990050339.

[24]

C. Hervés-Beloso and E. Moreno-García, Walrasian analysis via two-player games, Games and Economic Behaviour, 65 (2009), 220-233.  doi: 10.1016/j.geb.2007.12.001.

[25]

W. Hildenbrand, Cores and Equilibria of a Large Economy, Princeton Studies in Mathematical Economics, No. 5. Princeton University Press, Princeton, N.J., 1974.

[26]

L. Hurwicz, Outcome functions yielding Walrasian and Lindhal allocations at Nash equilibrium points, Review of Economic Studies, 46 (1979), 217-227.  doi: 10.2307/2297046.

[27]

M. A. Khan, Oligopoly in markets with a continuum of traders: An asymptotic interpretation, Journal of Economic Theory, 12 (1976), 273-97.  doi: 10.1016/0022-0531(76)90078-8.

[28]

E. Moreno-García, Strategic equilibria with partially consumable withholdings, International Game Theory Review, 8 (2006), 533-553.  doi: 10.1142/S0219198906001090.

[29]

J. F. Nash, Equilibrium points in n-person games, Proceedings of the National Academy of Sciences, 36 (1950), 48-49.  doi: 10.1073/pnas.36.1.48.

[30]

J. Ostroy and W. Zame, Nonatomic economies and the boundaries of perfect competition, Econometrica, 62 (1994)), 593-633. 

[31]

K. Podczeck, On core-Walras equivalence in Banach lattices, Journal of Mathematical Economics, 41 (2005), 764-792.  doi: 10.1016/j.jmateco.2004.04.001.

[32]

D. J. Roberts and A. Postlewaite, : The incentives for price-taking behavior in large exchange economies, Econometrica, 44 (1976), 115–127. doi: 10.2307/1911385.

[33]

D. Schmeidler, Walrasian analysis via strategic outcome functions, Econometrica, 48 (1980), 1585-1593.  doi: 10.2307/1911923.

[34]

L. S. Shapley, Non-cooperative general exchange, Theory of Measure of Economic Externalities, (1976).

[35]

L. Shapley and M. Shubik, Trade using one commodity as a means of payment, Journal of Political Economy, 85 (1977), 937-968. 

[36]

M. Shubik, Commodity money, oligopoly, credit and bankruptcy in a general equilibrium model, Western Economic Journal, 11 (1973), 24-38. 

[37]

R. Tourky and N. C. Yannelis, Markets with many more agents than commodities: Aumann's "hidden" assumption, Journal of Economic Theory, 101 (2001), 189-221.  doi: 10.1006/jeth.2000.2705.

[38]

M. H. Wooders, Equivalence of games and markets, Econometrica, 62 (1994), 1141-1160.  doi: 10.2307/2951510.

[1]

Junichi Minagawa. On the uniqueness of Nash equilibrium in strategic-form games. Journal of Dynamics and Games, 2020, 7 (2) : 97-104. doi: 10.3934/jdg.2020006

[2]

Dean A. Carlson. Finding open-loop Nash equilibrium for variational games. Conference Publications, 2005, 2005 (Special) : 153-163. doi: 10.3934/proc.2005.2005.153

[3]

Rui Mu, Zhen Wu. Nash equilibrium points of recursive nonzero-sum stochastic differential games with unbounded coefficients and related multiple\\ dimensional BSDEs. Mathematical Control and Related Fields, 2017, 7 (2) : 289-304. doi: 10.3934/mcrf.2017010

[4]

Jian Hou, Liwei Zhang. A barrier function method for generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2014, 10 (4) : 1091-1108. doi: 10.3934/jimo.2014.10.1091

[5]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A penalty method for generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2012, 8 (1) : 51-65. doi: 10.3934/jimo.2012.8.51

[6]

Elvio Accinelli, Bruno Bazzano, Franco Robledo, Pablo Romero. Nash Equilibrium in evolutionary competitive models of firms and workers under external regulation. Journal of Dynamics and Games, 2015, 2 (1) : 1-32. doi: 10.3934/jdg.2015.2.1

[7]

Shunfu Jin, Haixing Wu, Wuyi Yue, Yutaka Takahashi. Performance evaluation and Nash equilibrium of a cloud architecture with a sleeping mechanism and an enrollment service. Journal of Industrial and Management Optimization, 2020, 16 (5) : 2407-2424. doi: 10.3934/jimo.2019060

[8]

Enkhbat Rentsen, Battur Gompil. Generalized Nash equilibrium problem based on malfatti's problem. Numerical Algebra, Control and Optimization, 2021, 11 (2) : 209-220. doi: 10.3934/naco.2020022

[9]

Xiaona Fan, Li Jiang, Mengsi Li. Homotopy method for solving generalized Nash equilibrium problem with equality and inequality constraints. Journal of Industrial and Management Optimization, 2019, 15 (4) : 1795-1807. doi: 10.3934/jimo.2018123

[10]

Yu Chen. Delegation principle for multi-agency games under ex post equilibrium. Journal of Dynamics and Games, 2018, 5 (4) : 311-329. doi: 10.3934/jdg.2018019

[11]

Xiaolin Xu, Xiaoqiang Cai. Price and delivery-time competition of perishable products: Existence and uniqueness of Nash equilibrium. Journal of Industrial and Management Optimization, 2008, 4 (4) : 843-859. doi: 10.3934/jimo.2008.4.843

[12]

Mei Ju Luo, Yi Zeng Chen. Smoothing and sample average approximation methods for solving stochastic generalized Nash equilibrium problems. Journal of Industrial and Management Optimization, 2016, 12 (1) : 1-15. doi: 10.3934/jimo.2016.12.1

[13]

Yanhong Yuan, Hongwei Zhang, Liwei Zhang. A smoothing Newton method for generalized Nash equilibrium problems with second-order cone constraints. Numerical Algebra, Control and Optimization, 2012, 2 (1) : 1-18. doi: 10.3934/naco.2012.2.1

[14]

Bin Zhou, Hailin Sun. Two-stage stochastic variational inequalities for Cournot-Nash equilibrium with risk-averse players under uncertainty. Numerical Algebra, Control and Optimization, 2020, 10 (4) : 521-535. doi: 10.3934/naco.2020049

[15]

Hongming Yang, C. Y. Chung, Xiaojiao Tong, Pingping Bing. Research on dynamic equilibrium of power market with complex network constraints based on nonlinear complementarity function. Journal of Industrial and Management Optimization, 2008, 4 (3) : 617-630. doi: 10.3934/jimo.2008.4.617

[16]

Hongyu He, Naohiro Kato. Equilibrium submanifold for a biological system. Discrete and Continuous Dynamical Systems - S, 2011, 4 (6) : 1429-1441. doi: 10.3934/dcdss.2011.4.1429

[17]

Alain Chenciner. The angular momentum of a relative equilibrium. Discrete and Continuous Dynamical Systems, 2013, 33 (3) : 1033-1047. doi: 10.3934/dcds.2013.33.1033

[18]

Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete and Continuous Dynamical Systems - S, 2021, 14 (11) : 4141-4157. doi: 10.3934/dcdss.2021003

[19]

Samuel Drapeau, Peng Luo, Alexander Schied, Dewen Xiong. An FBSDE approach to market impact games with stochastic parameters. Probability, Uncertainty and Quantitative Risk, 2021, 6 (3) : 237-260. doi: 10.3934/puqr.2021012

[20]

Peiyu Li. Solving normalized stationary points of a class of equilibrium problem with equilibrium constraints. Journal of Industrial and Management Optimization, 2018, 14 (2) : 637-646. doi: 10.3934/jimo.2017065

 Impact Factor: 

Metrics

  • PDF downloads (514)
  • HTML views (263)
  • Cited by (0)

Other articles
by authors

[Back to Top]