April  2020, 7(2): 141-162. doi: 10.3934/jdg.2020009

Optimal resource allocation in the difference and differential Stackelberg games on marketing networks

1. 

Saint Petersburg Higher School of Economics, Russian Federation, 3A Khantemirovskaya St., 194100 St. Petersburg, Russia

2. 

Southern Federal University, Rostov-on-Don, Russian Federation, 8A Milchakov St., 344090 Rostov-on-Don, Russia

* Corresponding author: Gennady Ougolnitsky

Received  October 2019 Published  April 2020

Fund Project: The second author is supported by Russian Science Foundation, project 17-19-01038

We consider difference and differential Stackelberg game theoretic models with several followers of opinion control in marketing networks. It is assumed that in the stage of analysis of the network its opinion leaders have already been found and are the only objects of control. The leading player determines the marketing budgets of the followers by resource allocation. In the basic version of the models both the leader and the followers maximize the summary opinions of the network agents. In the second version the leader has a target value of the summary opinion. In all four models we have found the Stackelberg equilibrium and the respective payoffs of the players analytically. It is shown that the hierarchical control system is ideally compatible in all cases.

Citation: Alexei Korolev, Gennady Ougolnitsky. Optimal resource allocation in the difference and differential Stackelberg games on marketing networks. Journal of Dynamics & Games, 2020, 7 (2) : 141-162. doi: 10.3934/jdg.2020009
References:
[1]

D. Acemoglu and A. Ozdaglar, Opinion dynamics and learning in social networks, Dyn. Games Appl., 1 (2011), 3-49.  doi: 10.1007/s13235-010-0004-1.  Google Scholar

[2]

M. T. Agieva, A. V. Korolev and G. A. Ougolnitsky, Modeling and simulation of impact and control in social networks, in Modeling and Simulation of Social-Behavioral Phenomena in Creative Societies (eds. N. Agarwal, L. Sakalauskas, G.-W. Weber), Communications in Computer and Information Science, 1079, Springer, Cham, 2019, 29–40. Google Scholar

[3]

S. Z. Alparslan-GökO. DefterliE. Kropat and G.-W. Weber, Modeling, inference and optimization of regulatory networks based on time series data, European J. Oper. Res., 211 (2011), 1-14.  doi: 10.1016/j.ejor.2010.06.038.  Google Scholar

[4]

S. Z. Alparslan-GökB. Söyler and G.-W. Weber, A New Mathematical Approach in Environmental and Life Sciences: Gene–Environment Networks and Their Dynamics, Environmental Modeling & Assessment, 14 (2009), 267-288.   Google Scholar

[5]

T. Başar and G. J. Olsder, Dynamic noncooperative game theory, in Mathematics in Science and Engineering, 160, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982.  Google Scholar

[6]

A. Chkhartishvili, D. Gubanov, and D. Novikov, Social Networks: Models of Information Influence, Control, and Confrontation, Springer Publishers, 2019. Google Scholar

[7]

M. H. De Groot, Reaching a consensus, Journal of the American Statistical Association, 69 (1974), 118-121.   Google Scholar

[8] E. J. DocknerS. JørgensenN. V. Long and G. Sorger, Differential Games in Economics and Management Science, Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511805127.  Google Scholar
[9]

M. A. Gorelov and A. F. Kononenko, Dynamic models of conflicts. Ⅲ. Hierarchical games, Autom. Remote Control, 76 (2015), 264-277.  doi: 10.1134/S000511791502006X.  Google Scholar

[10] M. O. Jackson, Social and Economic Networks, Princeton University Press, Princeton, NJ, 2008.   Google Scholar
[11]

V. V. Mazalov and A. N. Rettieva, Fish wars with many players, Int. Game Theory Rev., 12 (2010), 385-405.  doi: 10.1142/S0219198910002738.  Google Scholar

[12]

C. Papadimitriou, Algorithms, games, and the internet, in Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, 749–753, ACM, New York, 2001,749–753. doi: 10.1145/380752.380883.  Google Scholar

[13]

F. S. Roberts, Discrete Mathematical Models with Applications to Social, Biological and Environmental Problems, Prentice-Hall, 1976. doi: 10.2307/2322080.  Google Scholar

[14]

T. Roughgarden, Algorithmic game theory: Some greatest hits and future directions, in Fifth IFIP International Conference on Theoretical Computer Science–TCS 2008, IFIP Int. Fed. Inf. Process., 273, Springer, New York, 2008, 21–42. doi: 10.1007/978-0-387-09680-3_2.  Google Scholar

[15]

A. A. Sedakov and M. Zhen, Opinion dynamics game in a social network with two influence nodes, Vestn. St.-Peterbg. Univ. Prikl. Mat. Inform. Protsessy Upr., 15 (2019), 118-125.  doi: 10.21638/11702/spbu10.2019.109.  Google Scholar

[16]

G. A. Ugol'nitskii and A. B. Usov, A study of differential models for hierarchical control systems via their discretization, Autom. Remote Control, 74 (2013), 252-263.  doi: 10.1134/S0005117913020070.  Google Scholar

[17]

G. A. Ugol'nitskii and A. B. Usov, Equilibria in models of hierarchically organized dynamical control systems with regard to sustainable development conditions, Autom. Remote Control, 75 (2014), 1055-1068.  doi: 10.1134/S000511791406006X.  Google Scholar

[18]

M. Zhen, Stackelberg equilibrium in opinion dynamics game in social network with two influence nodes, Contributions to Game Theory and Management, 12 (2019), 366-386.   Google Scholar

show all references

References:
[1]

D. Acemoglu and A. Ozdaglar, Opinion dynamics and learning in social networks, Dyn. Games Appl., 1 (2011), 3-49.  doi: 10.1007/s13235-010-0004-1.  Google Scholar

[2]

M. T. Agieva, A. V. Korolev and G. A. Ougolnitsky, Modeling and simulation of impact and control in social networks, in Modeling and Simulation of Social-Behavioral Phenomena in Creative Societies (eds. N. Agarwal, L. Sakalauskas, G.-W. Weber), Communications in Computer and Information Science, 1079, Springer, Cham, 2019, 29–40. Google Scholar

[3]

S. Z. Alparslan-GökO. DefterliE. Kropat and G.-W. Weber, Modeling, inference and optimization of regulatory networks based on time series data, European J. Oper. Res., 211 (2011), 1-14.  doi: 10.1016/j.ejor.2010.06.038.  Google Scholar

[4]

S. Z. Alparslan-GökB. Söyler and G.-W. Weber, A New Mathematical Approach in Environmental and Life Sciences: Gene–Environment Networks and Their Dynamics, Environmental Modeling & Assessment, 14 (2009), 267-288.   Google Scholar

[5]

T. Başar and G. J. Olsder, Dynamic noncooperative game theory, in Mathematics in Science and Engineering, 160, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982.  Google Scholar

[6]

A. Chkhartishvili, D. Gubanov, and D. Novikov, Social Networks: Models of Information Influence, Control, and Confrontation, Springer Publishers, 2019. Google Scholar

[7]

M. H. De Groot, Reaching a consensus, Journal of the American Statistical Association, 69 (1974), 118-121.   Google Scholar

[8] E. J. DocknerS. JørgensenN. V. Long and G. Sorger, Differential Games in Economics and Management Science, Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511805127.  Google Scholar
[9]

M. A. Gorelov and A. F. Kononenko, Dynamic models of conflicts. Ⅲ. Hierarchical games, Autom. Remote Control, 76 (2015), 264-277.  doi: 10.1134/S000511791502006X.  Google Scholar

[10] M. O. Jackson, Social and Economic Networks, Princeton University Press, Princeton, NJ, 2008.   Google Scholar
[11]

V. V. Mazalov and A. N. Rettieva, Fish wars with many players, Int. Game Theory Rev., 12 (2010), 385-405.  doi: 10.1142/S0219198910002738.  Google Scholar

[12]

C. Papadimitriou, Algorithms, games, and the internet, in Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, 749–753, ACM, New York, 2001,749–753. doi: 10.1145/380752.380883.  Google Scholar

[13]

F. S. Roberts, Discrete Mathematical Models with Applications to Social, Biological and Environmental Problems, Prentice-Hall, 1976. doi: 10.2307/2322080.  Google Scholar

[14]

T. Roughgarden, Algorithmic game theory: Some greatest hits and future directions, in Fifth IFIP International Conference on Theoretical Computer Science–TCS 2008, IFIP Int. Fed. Inf. Process., 273, Springer, New York, 2008, 21–42. doi: 10.1007/978-0-387-09680-3_2.  Google Scholar

[15]

A. A. Sedakov and M. Zhen, Opinion dynamics game in a social network with two influence nodes, Vestn. St.-Peterbg. Univ. Prikl. Mat. Inform. Protsessy Upr., 15 (2019), 118-125.  doi: 10.21638/11702/spbu10.2019.109.  Google Scholar

[16]

G. A. Ugol'nitskii and A. B. Usov, A study of differential models for hierarchical control systems via their discretization, Autom. Remote Control, 74 (2013), 252-263.  doi: 10.1134/S0005117913020070.  Google Scholar

[17]

G. A. Ugol'nitskii and A. B. Usov, Equilibria in models of hierarchically organized dynamical control systems with regard to sustainable development conditions, Autom. Remote Control, 75 (2014), 1055-1068.  doi: 10.1134/S000511791406006X.  Google Scholar

[18]

M. Zhen, Stackelberg equilibrium in opinion dynamics game in social network with two influence nodes, Contributions to Game Theory and Management, 12 (2019), 366-386.   Google Scholar

[1]

Carlos Hervés-Beloso, Emma Moreno-García. Market games and walrasian equilibria. Journal of Dynamics & Games, 2020, 7 (1) : 65-77. doi: 10.3934/jdg.2020004

[2]

Beatris A. Escobedo-Trujillo. Discount-sensitive equilibria in zero-sum stochastic differential games. Journal of Dynamics & Games, 2016, 3 (1) : 25-50. doi: 10.3934/jdg.2016002

[3]

Lesia V. Baranovska. Pursuit differential-difference games with pure time-lag. Discrete & Continuous Dynamical Systems - B, 2019, 24 (3) : 1021-1031. doi: 10.3934/dcdsb.2019004

[4]

Sylvain Sorin, Cheng Wan. Finite composite games: Equilibria and dynamics. Journal of Dynamics & Games, 2016, 3 (1) : 101-120. doi: 10.3934/jdg.2016005

[5]

Alejandra Fonseca-Morales, Onésimo Hernández-Lerma. A note on differential games with Pareto-optimal NASH equilibria: Deterministic and stochastic models. Journal of Dynamics & Games, 2017, 4 (3) : 195-203. doi: 10.3934/jdg.2017012

[6]

Josu Doncel, Nicolas Gast, Bruno Gaujal. Discrete mean field games: Existence of equilibria and convergence. Journal of Dynamics & Games, 2019, 6 (3) : 221-239. doi: 10.3934/jdg.2019016

[7]

Tao Li, Suresh P. Sethi. A review of dynamic Stackelberg game models. Discrete & Continuous Dynamical Systems - B, 2017, 22 (1) : 125-159. doi: 10.3934/dcdsb.2017007

[8]

John A. Morgan. Interception in differential pursuit/evasion games. Journal of Dynamics & Games, 2016, 3 (4) : 335-354. doi: 10.3934/jdg.2016018

[9]

Yves Achdou, Manh-Khang Dao, Olivier Ley, Nicoletta Tchou. A class of infinite horizon mean field games on networks. Networks & Heterogeneous Media, 2019, 14 (3) : 537-566. doi: 10.3934/nhm.2019021

[10]

Fabio Camilli, Elisabetta Carlini, Claudio Marchi. A model problem for Mean Field Games on networks. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4173-4192. doi: 10.3934/dcds.2015.35.4173

[11]

Jeremias Epperlein, Stefan Siegmund, Petr Stehlík, Vladimír  Švígler. Coexistence equilibria of evolutionary games on graphs under deterministic imitation dynamics. Discrete & Continuous Dynamical Systems - B, 2016, 21 (3) : 803-813. doi: 10.3934/dcdsb.2016.21.803

[12]

Yeong-Cheng Liou, Siegfried Schaible, Jen-Chih Yao. Supply chain inventory management via a Stackelberg equilibrium. Journal of Industrial & Management Optimization, 2006, 2 (1) : 81-94. doi: 10.3934/jimo.2006.2.81

[13]

Nickolas J. Michelacakis. Strategic delegation effects on Cournot and Stackelberg competition. Journal of Dynamics & Games, 2018, 5 (3) : 231-242. doi: 10.3934/jdg.2018015

[14]

Lianju Sun, Ziyou Gao, Yiju Wang. A Stackelberg game management model of the urban public transport. Journal of Industrial & Management Optimization, 2012, 8 (2) : 507-520. doi: 10.3934/jimo.2012.8.507

[15]

Víctor Hernández-Santamaría, Luz de Teresa. Robust Stackelberg controllability for linear and semilinear heat equations. Evolution Equations & Control Theory, 2018, 7 (2) : 247-273. doi: 10.3934/eect.2018012

[16]

Leon Petrosyan, David Yeung. Shapley value for differential network games: Theory and application. Journal of Dynamics & Games, 2020  doi: 10.3934/jdg.2020021

[17]

Jingzhen Liu, Ka-Fai Cedric Yiu. Optimal stochastic differential games with VaR constraints. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1889-1907. doi: 10.3934/dcdsb.2013.18.1889

[18]

Alain Bensoussan, Jens Frehse, Christine Grün. Stochastic differential games with a varying number of players. Communications on Pure & Applied Analysis, 2014, 13 (5) : 1719-1736. doi: 10.3934/cpaa.2014.13.1719

[19]

Ellina Grigorieva, Evgenii Khailov. Hierarchical differential games between manufacturer and retailer. Conference Publications, 2009, 2009 (Special) : 300-314. doi: 10.3934/proc.2009.2009.300

[20]

Kuang Huang, Xuan Di, Qiang Du, Xi Chen. A game-theoretic framework for autonomous vehicles velocity control: Bridging microscopic differential games and macroscopic mean field games. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020131

 Impact Factor: 

Metrics

  • PDF downloads (69)
  • HTML views (188)
  • Cited by (0)

Other articles
by authors

[Back to Top]