April  2020, 7(2): 141-162. doi: 10.3934/jdg.2020009

Optimal resource allocation in the difference and differential Stackelberg games on marketing networks

1. 

Saint Petersburg Higher School of Economics, Russian Federation, 3A Khantemirovskaya St., 194100 St. Petersburg, Russia

2. 

Southern Federal University, Rostov-on-Don, Russian Federation, 8A Milchakov St., 344090 Rostov-on-Don, Russia

* Corresponding author: Gennady Ougolnitsky

Received  October 2019 Published  April 2020

Fund Project: The second author is supported by Russian Science Foundation, project 17-19-01038

We consider difference and differential Stackelberg game theoretic models with several followers of opinion control in marketing networks. It is assumed that in the stage of analysis of the network its opinion leaders have already been found and are the only objects of control. The leading player determines the marketing budgets of the followers by resource allocation. In the basic version of the models both the leader and the followers maximize the summary opinions of the network agents. In the second version the leader has a target value of the summary opinion. In all four models we have found the Stackelberg equilibrium and the respective payoffs of the players analytically. It is shown that the hierarchical control system is ideally compatible in all cases.

Citation: Alexei Korolev, Gennady Ougolnitsky. Optimal resource allocation in the difference and differential Stackelberg games on marketing networks. Journal of Dynamics & Games, 2020, 7 (2) : 141-162. doi: 10.3934/jdg.2020009
References:
[1]

D. Acemoglu and A. Ozdaglar, Opinion dynamics and learning in social networks, Dyn. Games Appl., 1 (2011), 3-49.  doi: 10.1007/s13235-010-0004-1.  Google Scholar

[2]

M. T. Agieva, A. V. Korolev and G. A. Ougolnitsky, Modeling and simulation of impact and control in social networks, in Modeling and Simulation of Social-Behavioral Phenomena in Creative Societies (eds. N. Agarwal, L. Sakalauskas, G.-W. Weber), Communications in Computer and Information Science, 1079, Springer, Cham, 2019, 29–40. Google Scholar

[3]

S. Z. Alparslan-GökO. DefterliE. Kropat and G.-W. Weber, Modeling, inference and optimization of regulatory networks based on time series data, European J. Oper. Res., 211 (2011), 1-14.  doi: 10.1016/j.ejor.2010.06.038.  Google Scholar

[4]

S. Z. Alparslan-GökB. Söyler and G.-W. Weber, A New Mathematical Approach in Environmental and Life Sciences: Gene–Environment Networks and Their Dynamics, Environmental Modeling & Assessment, 14 (2009), 267-288.   Google Scholar

[5]

T. Başar and G. J. Olsder, Dynamic noncooperative game theory, in Mathematics in Science and Engineering, 160, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982.  Google Scholar

[6]

A. Chkhartishvili, D. Gubanov, and D. Novikov, Social Networks: Models of Information Influence, Control, and Confrontation, Springer Publishers, 2019. Google Scholar

[7]

M. H. De Groot, Reaching a consensus, Journal of the American Statistical Association, 69 (1974), 118-121.   Google Scholar

[8] E. J. DocknerS. JørgensenN. V. Long and G. Sorger, Differential Games in Economics and Management Science, Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511805127.  Google Scholar
[9]

M. A. Gorelov and A. F. Kononenko, Dynamic models of conflicts. Ⅲ. Hierarchical games, Autom. Remote Control, 76 (2015), 264-277.  doi: 10.1134/S000511791502006X.  Google Scholar

[10] M. O. Jackson, Social and Economic Networks, Princeton University Press, Princeton, NJ, 2008.   Google Scholar
[11]

V. V. Mazalov and A. N. Rettieva, Fish wars with many players, Int. Game Theory Rev., 12 (2010), 385-405.  doi: 10.1142/S0219198910002738.  Google Scholar

[12]

C. Papadimitriou, Algorithms, games, and the internet, in Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, 749–753, ACM, New York, 2001,749–753. doi: 10.1145/380752.380883.  Google Scholar

[13]

F. S. Roberts, Discrete Mathematical Models with Applications to Social, Biological and Environmental Problems, Prentice-Hall, 1976. doi: 10.2307/2322080.  Google Scholar

[14]

T. Roughgarden, Algorithmic game theory: Some greatest hits and future directions, in Fifth IFIP International Conference on Theoretical Computer Science–TCS 2008, IFIP Int. Fed. Inf. Process., 273, Springer, New York, 2008, 21–42. doi: 10.1007/978-0-387-09680-3_2.  Google Scholar

[15]

A. A. Sedakov and M. Zhen, Opinion dynamics game in a social network with two influence nodes, Vestn. St.-Peterbg. Univ. Prikl. Mat. Inform. Protsessy Upr., 15 (2019), 118-125.  doi: 10.21638/11702/spbu10.2019.109.  Google Scholar

[16]

G. A. Ugol'nitskii and A. B. Usov, A study of differential models for hierarchical control systems via their discretization, Autom. Remote Control, 74 (2013), 252-263.  doi: 10.1134/S0005117913020070.  Google Scholar

[17]

G. A. Ugol'nitskii and A. B. Usov, Equilibria in models of hierarchically organized dynamical control systems with regard to sustainable development conditions, Autom. Remote Control, 75 (2014), 1055-1068.  doi: 10.1134/S000511791406006X.  Google Scholar

[18]

M. Zhen, Stackelberg equilibrium in opinion dynamics game in social network with two influence nodes, Contributions to Game Theory and Management, 12 (2019), 366-386.   Google Scholar

show all references

References:
[1]

D. Acemoglu and A. Ozdaglar, Opinion dynamics and learning in social networks, Dyn. Games Appl., 1 (2011), 3-49.  doi: 10.1007/s13235-010-0004-1.  Google Scholar

[2]

M. T. Agieva, A. V. Korolev and G. A. Ougolnitsky, Modeling and simulation of impact and control in social networks, in Modeling and Simulation of Social-Behavioral Phenomena in Creative Societies (eds. N. Agarwal, L. Sakalauskas, G.-W. Weber), Communications in Computer and Information Science, 1079, Springer, Cham, 2019, 29–40. Google Scholar

[3]

S. Z. Alparslan-GökO. DefterliE. Kropat and G.-W. Weber, Modeling, inference and optimization of regulatory networks based on time series data, European J. Oper. Res., 211 (2011), 1-14.  doi: 10.1016/j.ejor.2010.06.038.  Google Scholar

[4]

S. Z. Alparslan-GökB. Söyler and G.-W. Weber, A New Mathematical Approach in Environmental and Life Sciences: Gene–Environment Networks and Their Dynamics, Environmental Modeling & Assessment, 14 (2009), 267-288.   Google Scholar

[5]

T. Başar and G. J. Olsder, Dynamic noncooperative game theory, in Mathematics in Science and Engineering, 160, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1982.  Google Scholar

[6]

A. Chkhartishvili, D. Gubanov, and D. Novikov, Social Networks: Models of Information Influence, Control, and Confrontation, Springer Publishers, 2019. Google Scholar

[7]

M. H. De Groot, Reaching a consensus, Journal of the American Statistical Association, 69 (1974), 118-121.   Google Scholar

[8] E. J. DocknerS. JørgensenN. V. Long and G. Sorger, Differential Games in Economics and Management Science, Cambridge University Press, Cambridge, 2000.  doi: 10.1017/CBO9780511805127.  Google Scholar
[9]

M. A. Gorelov and A. F. Kononenko, Dynamic models of conflicts. Ⅲ. Hierarchical games, Autom. Remote Control, 76 (2015), 264-277.  doi: 10.1134/S000511791502006X.  Google Scholar

[10] M. O. Jackson, Social and Economic Networks, Princeton University Press, Princeton, NJ, 2008.   Google Scholar
[11]

V. V. Mazalov and A. N. Rettieva, Fish wars with many players, Int. Game Theory Rev., 12 (2010), 385-405.  doi: 10.1142/S0219198910002738.  Google Scholar

[12]

C. Papadimitriou, Algorithms, games, and the internet, in Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, 749–753, ACM, New York, 2001,749–753. doi: 10.1145/380752.380883.  Google Scholar

[13]

F. S. Roberts, Discrete Mathematical Models with Applications to Social, Biological and Environmental Problems, Prentice-Hall, 1976. doi: 10.2307/2322080.  Google Scholar

[14]

T. Roughgarden, Algorithmic game theory: Some greatest hits and future directions, in Fifth IFIP International Conference on Theoretical Computer Science–TCS 2008, IFIP Int. Fed. Inf. Process., 273, Springer, New York, 2008, 21–42. doi: 10.1007/978-0-387-09680-3_2.  Google Scholar

[15]

A. A. Sedakov and M. Zhen, Opinion dynamics game in a social network with two influence nodes, Vestn. St.-Peterbg. Univ. Prikl. Mat. Inform. Protsessy Upr., 15 (2019), 118-125.  doi: 10.21638/11702/spbu10.2019.109.  Google Scholar

[16]

G. A. Ugol'nitskii and A. B. Usov, A study of differential models for hierarchical control systems via their discretization, Autom. Remote Control, 74 (2013), 252-263.  doi: 10.1134/S0005117913020070.  Google Scholar

[17]

G. A. Ugol'nitskii and A. B. Usov, Equilibria in models of hierarchically organized dynamical control systems with regard to sustainable development conditions, Autom. Remote Control, 75 (2014), 1055-1068.  doi: 10.1134/S000511791406006X.  Google Scholar

[18]

M. Zhen, Stackelberg equilibrium in opinion dynamics game in social network with two influence nodes, Contributions to Game Theory and Management, 12 (2019), 366-386.   Google Scholar

[1]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[2]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[3]

D. R. Michiel Renger, Johannes Zimmer. Orthogonality of fluxes in general nonlinear reaction networks. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 205-217. doi: 10.3934/dcdss.2020346

[4]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[5]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[6]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[7]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[8]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[9]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[10]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[11]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[12]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[13]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[14]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

 Impact Factor: 

Metrics

  • PDF downloads (74)
  • HTML views (189)
  • Cited by (0)

Other articles
by authors

[Back to Top]