July  2020, 7(3): 185-196. doi: 10.3934/jdg.2020013

A dynamic extension of the classical model of production prices determination

1. 

Departamento de Métodos Cuantitativos - Facultad de Ciencias Económicas y de Administración, Universidad de la República (Uruguay)

2. 

Facultad de Economia, Universidad Nacional Autónoma de México

* Corresponding author: gcayssials@ccee.edu.uy

Received  February 2020 Revised  April 2020 Published  July 2020

Fund Project: Our research was supported by CSIC-UDELAR (project "Grupo de investigación en Dinámica Económica"; ID 881928)

This paper generalizes the classical model of determination of production prices for two commodities by introducing a dynamics generated by the possibility that the profit rate can be computed using prices of different stages. In this theoretical framework, the prices show a codependency between the two sectors, given by the rate of profit, and inter-industry transactions. In this setup and using discrete time, the general model can be represented by a nonlinear two dimensional dynamical system of difference equations of second order. The study shows that the dynamical system admits a unique solution for any initial condition and that there is a unique nontrivial equilibrium. In addition, it can be shown that locally the dynamical system can be represented in the canonical form $ x_{t+1} = f(x_{t}) $ and that the stability of the equilibrium depends on the parameters of the production process. Future research includes the extension of the model to the case of several commodities and the closed solution of the model.

Citation: Juan Gabriel Brida, Gaston Cayssials, Oscar Córdoba Rodríguez, Martín Puchet Anyul. A dynamic extension of the classical model of production prices determination. Journal of Dynamics & Games, 2020, 7 (3) : 185-196. doi: 10.3934/jdg.2020013
References:
[1]

A. Brauer, Limits for the characteristic roots of a matrix, Duke Mathematical Journal, 13 (1946), 387-395.  doi: 10.1215/S0012-7094-46-01333-6.  Google Scholar

[2]

O. Córdoba Rodriguez, Dinámica de Precios en una Economía de dos Bienes, Master's thesis, Universidad Nacional Autónoma de México, México, 2015. Available from https://ru.dgb.unam.mx/handle/DGB_UNAM/TES01000724337. Google Scholar

[3]

J. Eatwell, The irrelevance of returns to scale in Sraffa's analysis, Journal of Economic Literature, 15 (1977), 61-68.   Google Scholar

[4]

C. H. Edwards, Advanced Calculus of Several Variables, Courier Corporation, Massachusetts, 2012. doi: 10.1007/978-0-8176-8412-9.  Google Scholar

[5]

D. Hawkins and H. A. Simon, Note: Some conditions of macroeconomic stability, Econometrica, Journal of the Econometric Society, (1949), 245–248. doi: 10.2307/1905526.  Google Scholar

[6]

K. Jittorntrum, An implicit function theorem, Journal of Optimization Theory and Applications, 25 (1978), 575-577.  doi: 10.1007/BF00933522.  Google Scholar

[7]

S. G. Krantz and H. R. Parks, Implicit Function Theorem: History, Theory, and Applications, Springer Science & Business Media, 2012. doi: 10.1007/978-1-4614-5981-1.  Google Scholar

[8] H. D. Kurz and N. Salvadori, Theory of Production: A Long-Period Analysis, Cambridge University Press, 1997.  doi: 10.1017/CBO9780511625770.  Google Scholar
[9]

R. Solow, On the structure of linear models, Econometrica: Journal of the Econometric Society, 20 (1952), 29-46.  doi: 10.2307/1907805.  Google Scholar

[10] P. Sraffa, Production of Commodities by Means of Commodities: Prelude to a Critique of Economic Theory, Cambridge University Press, 1960.   Google Scholar

show all references

References:
[1]

A. Brauer, Limits for the characteristic roots of a matrix, Duke Mathematical Journal, 13 (1946), 387-395.  doi: 10.1215/S0012-7094-46-01333-6.  Google Scholar

[2]

O. Córdoba Rodriguez, Dinámica de Precios en una Economía de dos Bienes, Master's thesis, Universidad Nacional Autónoma de México, México, 2015. Available from https://ru.dgb.unam.mx/handle/DGB_UNAM/TES01000724337. Google Scholar

[3]

J. Eatwell, The irrelevance of returns to scale in Sraffa's analysis, Journal of Economic Literature, 15 (1977), 61-68.   Google Scholar

[4]

C. H. Edwards, Advanced Calculus of Several Variables, Courier Corporation, Massachusetts, 2012. doi: 10.1007/978-0-8176-8412-9.  Google Scholar

[5]

D. Hawkins and H. A. Simon, Note: Some conditions of macroeconomic stability, Econometrica, Journal of the Econometric Society, (1949), 245–248. doi: 10.2307/1905526.  Google Scholar

[6]

K. Jittorntrum, An implicit function theorem, Journal of Optimization Theory and Applications, 25 (1978), 575-577.  doi: 10.1007/BF00933522.  Google Scholar

[7]

S. G. Krantz and H. R. Parks, Implicit Function Theorem: History, Theory, and Applications, Springer Science & Business Media, 2012. doi: 10.1007/978-1-4614-5981-1.  Google Scholar

[8] H. D. Kurz and N. Salvadori, Theory of Production: A Long-Period Analysis, Cambridge University Press, 1997.  doi: 10.1017/CBO9780511625770.  Google Scholar
[9]

R. Solow, On the structure of linear models, Econometrica: Journal of the Econometric Society, 20 (1952), 29-46.  doi: 10.2307/1907805.  Google Scholar

[10] P. Sraffa, Production of Commodities by Means of Commodities: Prelude to a Critique of Economic Theory, Cambridge University Press, 1960.   Google Scholar
Table 1.   
$ a_{11} $ $ a_{12} $ $ a_{21} $ $ a_{22} $ $ l_{1} $ $ l_{2} $ Qty. of eigenvalues with modulus smaller than one
$ 0.96 $ $ 0.02 $ $ 0.01 $ $ 0.94 $ $ 0.09 $ $ 0,91 $ zero (repulsor)
$ 0.89 $ $ 0.06 $ $ 0.06 $ $ 0.75 $ $ 0.53 $ $ 0.47 $ one (saddle point)
$ 0.17 $ $ 0.23 $ $ 0.8 $ $ 0.17 $ $ 0.19 $ $ 0.81 $ two (saddle point)
$ 0.04 $ $ 0.18 $ $ 0.02 $ $ 0.27 $ $ 0.99 $ $ 0.01 $ three (saddle point)
$ 0.69 $ $ 0.28 $ $ 0.14 $ $ 0.49 $ $ 0.29 $ $ 0.71 $ four (attractor)
$ a_{11} $ $ a_{12} $ $ a_{21} $ $ a_{22} $ $ l_{1} $ $ l_{2} $ Qty. of eigenvalues with modulus smaller than one
$ 0.96 $ $ 0.02 $ $ 0.01 $ $ 0.94 $ $ 0.09 $ $ 0,91 $ zero (repulsor)
$ 0.89 $ $ 0.06 $ $ 0.06 $ $ 0.75 $ $ 0.53 $ $ 0.47 $ one (saddle point)
$ 0.17 $ $ 0.23 $ $ 0.8 $ $ 0.17 $ $ 0.19 $ $ 0.81 $ two (saddle point)
$ 0.04 $ $ 0.18 $ $ 0.02 $ $ 0.27 $ $ 0.99 $ $ 0.01 $ three (saddle point)
$ 0.69 $ $ 0.28 $ $ 0.14 $ $ 0.49 $ $ 0.29 $ $ 0.71 $ four (attractor)
Table 2.   
type of equilibriums frequency percent
repulsor $ 18 $ $ 0.011 $
saddle point $ 16711 $ $ 0.972 $
attractor $ 29 $ $ 0.017 $
type of equilibriums frequency percent
repulsor $ 18 $ $ 0.011 $
saddle point $ 16711 $ $ 0.972 $
attractor $ 29 $ $ 0.017 $
[1]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[2]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[3]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[4]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[5]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[6]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[7]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[8]

Veena Goswami, Gopinath Panda. Optimal customer behavior in observable and unobservable discrete-time queues. Journal of Industrial & Management Optimization, 2021, 17 (1) : 299-316. doi: 10.3934/jimo.2019112

[9]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[10]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[11]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[12]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[13]

Chongyang Liu, Meijia Han, Zhaohua Gong, Kok Lay Teo. Robust parameter estimation for constrained time-delay systems with inexact measurements. Journal of Industrial & Management Optimization, 2021, 17 (1) : 317-337. doi: 10.3934/jimo.2019113

[14]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[15]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[16]

Yanjun He, Wei Zeng, Minghui Yu, Hongtao Zhou, Delie Ming. Incentives for production capacity improvement in construction supplier development. Journal of Industrial & Management Optimization, 2021, 17 (1) : 409-426. doi: 10.3934/jimo.2019118

[17]

Jiahao Qiu, Jianjie Zhao. Maximal factors of order $ d $ of dynamical cubespaces. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 601-620. doi: 10.3934/dcds.2020278

[18]

Fanni M. Sélley. A self-consistent dynamical system with multiple absolutely continuous invariant measures. Journal of Computational Dynamics, 2021, 8 (1) : 9-32. doi: 10.3934/jcd.2021002

[19]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[20]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

 Impact Factor: 

Metrics

  • PDF downloads (51)
  • HTML views (166)
  • Cited by (0)

[Back to Top]