[1]
|
M. Alatriste-Contreras, J. Brida and M. Puchet, Structural change and economic dynamics: Rethinking from the complexity approach, Journal of Dynamics and Games, American Institute of Mathematical Sciences, 6 (2019).
doi: 10.3934/jdg.2019007.
|
[2]
|
E. Allen, Modeling with Ito Stochastic Differential Equations, Springer, (2006).
|
[3]
|
W. Arthur, Complexity Economics: A Different Framework for Economic Thought, Complexity and the Economy, Oxford University Press, (2014).
|
[4]
|
L. Bacheliere, Théorie de la Spéculation, Phd. Thesis, University of Paris, (1900).
|
[5]
|
J. Beran, Statistics for Long Memory Processes, Chapman and Hall, New York, (1994).
|
[6]
|
F. Biagini, Y. Hu, B. Oksendal and T. Zhang, Stochastic Calculus for Fractional Brownian Motion and Applications, Springer, (2006).
doi: 10.1007/978-1-84628-797-8.
|
[7]
|
F. Black and M. Scholes, The Pricing of Options and Corporate Liabilities, Journal of Political Economy, 81 (1973), 637-654.
doi: 10.1086/260062.
|
[8]
|
T. Bollerslev, Generalized autoregressive conditional heterocedasticity, History of Economic Thought Books, McMaster University Archive for Journal of Econometrics, 31 (1986), 307-327.
doi: 10.1016/0304-4076(86)90063-1.
|
[9]
|
T. Bollerslev and H. Mikkelsen, Modeling and pricing long memory in stock market volatility, Journal of Econometric, 73 (1996), 151-184.
doi: 10.1016/0304-4076(95)01736-4.
|
[10]
|
J. Bouchaud and M. Potters, Theory of Financial Risks: From Statistical Physics to Risk Management, Cambridge University Press, (2000).
|
[11]
|
F. Breidt, N. Crato and P. de Lima, The detection and estimation of long memory in stochastic volatility, Journal of Econometrics, 83 (1998), 325-348.
doi: 10.1016/S0304-4076(97)00072-9.
|
[12]
|
D. Brigo and F. Mercurio, Interest Rate Models Theory and Practice with Smile, Inflation and Credit, 2nd edition, Springer Verlag, (2006).
|
[13]
|
P. Cheridito, H. Kawaguchi and M. Maejima, Fractional Ornstein-Uhlenbeck Processes, Electronic Journal of Probability, 8 (2003), 1-14.
doi: 10.1214/EJP.v8-125.
|
[14]
|
A. Chronopoulou and F. Viens, Estimation and pricing under long-memory stochastic volatility, Annals of Finance, 8 (2012), 379-403.
doi: 10.1007/s10436-010-0156-4.
|
[15]
|
R. Cont, Empirical properties of asset returns: Stylized facts and statistical issues, Quantitative Finance, 1 (2001), 223-236.
doi: 10.1080/713665670.
|
[16]
|
R. Cont, Long range dependence in financial markets, Fractals in Engineering, Springer, (2005), 159–180.
doi: 10.1007/1-84628-048-6_11.
|
[17]
|
F. Engle, Autoregressive conditional heterocedasticity whit estimates of the variance of United Kingdom inflation, History of Economic Thought Books, McMaster University Archive for Econometrica, 50 (1982), 987-1008.
doi: 10.2307/1912773.
|
[18]
|
E. Ghysels, A. Harvey and E. Renault, Stochastic volatility, Handbook of Statistics, 14 (1996), 119-191.
doi: 10.1016/S0169-7161(96)14007-4.
|
[19]
|
A. Gloter and M. Hoffmann, Stochastic volatility and fractional Brownian motion, Stochastic Processes and their Applications, 113 (2004), 143-172.
doi: 10.1016/j.spa.2004.03.008.
|
[20]
|
C. Granger and R. Joyeux, An introduction to long memory time series models and fractional differencing, Journal of Time Series Analysis, 1 (1980), 15-29.
doi: 10.1111/j.1467-9892.1980.tb00297.x.
|
[21]
|
W. Granger, S. Spear and Z. Ding, Statistics and Finance: An Interface. Stylized Facts on the Temporal and Distributional Properties of Absolute Returns: An Update, Imperial College Press, London, (2000), 97–120.
|
[22]
|
T. Graves, R. Gramacy, N. Watkins and C. Franzke, A Brief History of Long Memory: Hurst, Mandelbrot and the Road to ARFIMA, 1951–1980, Entropy, 19 (2017).
doi: 10.3390/e19090437.
|
[23]
|
A. Harvey, Long memory in stochastic volatility, Forecasting Volatility in Financial Markets, (1998), 307–320.
doi: 10.1016/B978-075066942-9.50018-2.
|
[24]
|
J. Hasslett and E. Raftery, Space-time modelling with long memory dependence: Assessing Irelands win power resource, Journal of Applied Statistics, 38 (1989), 1-50.
doi: 10.2307/2347679.
|
[25]
|
S. Heston, A closed-form solution for options with stochastic volatility with applications to bond and currency options, Review of Financial Studies, Society for Financial Studies, 6 (1993), 327-343.
doi: 10.1093/rfs/6.2.327.
|
[26]
|
H. Hurst, The long term storage capacity of reservoirs, Transactions of the American Society of Civil Engineers, 1116 (1951), 770-808.
|
[27]
|
B. Jacobsen, Long term dependence in stock returns, Journal of Empirical Finance, 3 (1996), 393-417.
doi: 10.1016/S0927-5398(96)00009-6.
|
[28]
|
J. Kalemkerian and J. R. León, Fractional iterated Ornstein-Uhlenbeck processes, Latin American Journal of Probability and Mathematical Statistics, 16 (2019), 1105-1128.
doi: 10.30757/ALEA.v16-41.
|
[29]
|
J. Kalemkerian, Parameter estimation for discretely observed fractional iterated Ornstein–Uhlenbeck processes, preprint, arXiv: 2004.10369 (2020).
|
[30]
|
A. Kolmogorov, Wienersche Spiralen und Einige Andere Interessante Kurven im Hilbertschen Raum., C. R. Acad. Sci. URSS, (1940), 115–118.
|
[31]
|
S. London and F. Tohmé, Economic evolution and uncertainty: Transitions and structural changes, Journal of Dynamics and Games, American Institute of Mathematical Sciences, 6 (2019).
doi: 10.3934/jdg.2019011.
|
[32]
|
L. Lima and Z. Xiao, Is there long memory in financial time series?, Applied Financial Economics, 20 (2013), 487-500.
doi: 10.1080/09603100903459733.
|
[33]
|
T. Lux, Long-term stochastic dependence in financial prices: Evidence from the German stock market, Applied Economics Letters, 3 (1996), 701-706.
doi: 10.1080/135048596355691.
|
[34]
|
B. Mandelbrot, Une Classe Processus Stochastiques Homothétiques a soi: Application a la loi Climatologique H. E. Hurst, C.R. Acad. Sci. Paris, (1965), 3274–3277.
|
[35]
|
B. Mandelbrot and J. Wallis, Robustness of the rescaled range R/S in the measurement of noncyclic long run statistical dependence, Water Resour. Res., 5 (1969), 967-988.
|
[36]
|
R. Merton, On the pricing of corporate debt: The risk structure of interest rates, Journal of Finance, 22 (1974), 449-470.
doi: 10.1142/9789814759588_0003.
|
[37]
|
M. Musiela and M. Rutkowski, Martingale Methods in Financial Modeling, 2nd edition, Springer, (2005).
|
[38]
|
H. Niu and J. Wang, Volatility clustering and long memory of financial time series and financial price model, Digital Signal Processing, 23 (2013), 489-498.
doi: 10.1016/j.dsp.2012.11.004.
|
[39]
|
W. Palma, Long Memory Time Series-Theory and Methods, John Wiley, Hoboken, NJ, (2007).
doi: 10.1002/9780470131466.
|
[40]
|
W. Petty, Political Arithmetick, History of Economic Thought Books, McMaster University Archive for the History of Economic Thought, (1690).
|
[41]
|
M. Taqqu, M. Teverovsky and W. Willinger, Estimators for long range dependence: An empirical study, Fractals, 3 (1995), 785-788.
doi: 10.1142/S0218348X95000692.
|
[42]
|
P. Theodossiou, Financial data and the skewed generalized T distribution, Management Science, 44 (1998), 1650-1661.
|
[43]
|
G. Uhlenbeck and L. Ornstein, On the theory of Brownian Motion, Physical Review, 36 (1930), 823-841.
doi: 10.1103/PhysRev.36.823.
|
[44]
|
R. Weron, Estimating long-range dependence: Finite sample properties and confidence intervals, Physica A: Statistical Mechanics and its Applications, 312 (2002), 285-299.
doi: 10.1016/S0378-4371(02)00961-5.
|