doi: 10.3934/jdg.2020021

Shapley value for differential network games: Theory and application

1. 

St. Petersburg State University, Univereitetskaya Nab. 7/9 Saint-Petersburg, Russia

2. 

SRS Consortium for Advanced Study in Cooperative Dynamic Games, Shue Yan University, 10 Wai Tsui Cres, North Point, Hong Kong

* Corresponding author: Leon Petrosyan

Received  December 2019 Revised  December 2019 Published  July 2020

Fund Project: The first author is supported by Russian Science Foundation the grant Optimal Behavior in Conflict-Controlled Systems 17-11-01079

This paper presents a time-consistent dynamic Shapley value imputation for a class of differential network games. A novel form for measuring the worth of coalitions – named as cooperative-trajectory characteristic function – is developed for the Shapley value imputation. This new class of characteristic functions is evaluated along the cooperative trajectory. It measures the worth of coalitions under the process of cooperation instead of under min-max confrontation or the Nash non-cooperative stance. The resultant dynamic Shapley value imputation yields a new cooperative solution in differential network games.

Citation: Leon Petrosyan, David Yeung. Shapley value for differential network games: Theory and application. Journal of Dynamics & Games, doi: 10.3934/jdg.2020021
References:
[1]

H. Cao, E. Ertin and A. Arora, MiniMax equilibrium of networked differential games, ACM Transactions on Autonomous and Adaptive Systems, 3 (1963). doi: 10.1145/1452001.1452004.  Google Scholar

[2]

Y. V. Chirkova, Optimal calls to a 2-server with loss and random access, Autom. Remote Control, 78 (2017), 557-580.  doi: 10.1134/s0005117917030146.  Google Scholar

[3]

H. Gao and Y. Pankratova, Cooperation in dynamic network games, Contributions to Game Theory and Management, 10 (2017), 42-67.   Google Scholar

[4]

E. Gromova, The shapley value as a sustainable cooperative solution in differential games of three players, in Recent Advances in Game Theory and Applications, Static Dyn. Game Theory Found. Appl., Birkhäuser/Springer, Cham, 2016. doi: 10.1007/978-3-319-43838-2\_4.  Google Scholar

[5]

R. Isaacs, Differential Games, Wiley, New York, 1965. Google Scholar

[6]

N. N. Krasovski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$, Control of a Dynamic System, Nauka, Moskow, 1985.  Google Scholar

[7] V. Mazalov and J.V. Chirkova, Networking Games: Network Forming Games and Games on Networks, Academic Press, 2019.   Google Scholar
[8]

M. A. G. Meza and J. D. Lopez-Barrientos, A Differential game of a duopoly with network externalities, in Recent Advances in Game Theory and Applications, Static Dyn. Game Theory Found. Appl., Birkhäuser/Springer, Cham, 2016, 49–66. doi: 10.1007/978-3-319-43838-2.  Google Scholar

[9]

H.-M. Pai, A differential game formulation of a controlled network, Queueing Syst., 64 (2010), 325-358.  doi: 10.1007/s11134-009-9161-6.  Google Scholar

[10]

L. A. PetrosianE. V. Gromova and S. V. Pogozhev, Strong time-consistent subset of core in cooperative differential games with finite time horizon, Autom. Remote Control, 79 (2018), 1912-1928.  doi: 10.5555/3288409.3288431.  Google Scholar

[11]

L. A. Petrosjan, The shapley value for differential games, in New trends in dynamic games and applications, Ann. Internat. Soc. Dynam. Games, 3, Birkhäuser Boston, Boston, MA, 1995, 409–417.  Google Scholar

[12]

L. A. Petrosyan, Cooperative differential games on networks, Trudy Inst. Mat. i Mekh. UrO RAN, 16 (2010), 143-150.   Google Scholar

[13]

L. A. Petrosyan and A. A. Sedakov, Multistage networking games with full information, Matematicheskaya Teoriya Igr I ee Prilozheniya, 2 (2009), 66-81.   Google Scholar

[14]

L. Petrosyan and G. Zaccour, Time-consistent shapley value allocation of pollution cost reduction, J. Econom. Dynam. Control, 27 (2003), 381-398.  doi: 10.1016/S0165-1889(01)00053-7.  Google Scholar

[15] L. S. Shapley, A value for n-person games,in Contributions to the Theory of Games, vol. 2, Annals of Mathematics Studies, 28, Princeton University Press, Princeton, NJ, 1953.   Google Scholar
[16]

B.-W. Wie, A differential game model of Nash equilibrium on a congested traffic network, Networks, 23 (1993), 557-565.  doi: 10.1002/net.3230230606.  Google Scholar

[17]

B. W. Wie, A differential game approach to the dynamic mixed behavior traffic network equilibrium problem, European J. Oper. Res., 83 (1995), 117-136.   Google Scholar

[18]

D. W. K. Yeung, Subgame consistent shapley value imputation for cost-saving joint ventures, Mathematical Game Theory and Applications, 2 (2010), 137-149.   Google Scholar

[19]

D. W. K. Yeung and L. A. Petrosyan, Subgame consistent cooperative solutions in stochastic differential games, J. Optim. Theory Appl., 120 (2004), 651-666.  doi: 10.1023/B:JOTA.0000025714.04164.e4.  Google Scholar

[20]

D. W. K. Yeung and L. A. Petrosyan, Subgame consistent cooperation: A comprehensive treatise, in Theory and Decision Library C., 47, Springer, Singapore, 2016.  Google Scholar

[21]

D. W. K. Yeung and L. A. Petrosyan, Dynamic Shapley Value and Dynamic Nash Bargaining, Nova Science, New York, 2018. Google Scholar

[22]

H. Zhang, L. V. Jiang, S. Huang, J. Wang and Y. Zhang, Attack-defense differential game model for network defense strategy selection, IEEE Access, (2018). doi: 10.1109/ACCESS.2018.2880214.  Google Scholar

show all references

References:
[1]

H. Cao, E. Ertin and A. Arora, MiniMax equilibrium of networked differential games, ACM Transactions on Autonomous and Adaptive Systems, 3 (1963). doi: 10.1145/1452001.1452004.  Google Scholar

[2]

Y. V. Chirkova, Optimal calls to a 2-server with loss and random access, Autom. Remote Control, 78 (2017), 557-580.  doi: 10.1134/s0005117917030146.  Google Scholar

[3]

H. Gao and Y. Pankratova, Cooperation in dynamic network games, Contributions to Game Theory and Management, 10 (2017), 42-67.   Google Scholar

[4]

E. Gromova, The shapley value as a sustainable cooperative solution in differential games of three players, in Recent Advances in Game Theory and Applications, Static Dyn. Game Theory Found. Appl., Birkhäuser/Springer, Cham, 2016. doi: 10.1007/978-3-319-43838-2\_4.  Google Scholar

[5]

R. Isaacs, Differential Games, Wiley, New York, 1965. Google Scholar

[6]

N. N. Krasovski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$, Control of a Dynamic System, Nauka, Moskow, 1985.  Google Scholar

[7] V. Mazalov and J.V. Chirkova, Networking Games: Network Forming Games and Games on Networks, Academic Press, 2019.   Google Scholar
[8]

M. A. G. Meza and J. D. Lopez-Barrientos, A Differential game of a duopoly with network externalities, in Recent Advances in Game Theory and Applications, Static Dyn. Game Theory Found. Appl., Birkhäuser/Springer, Cham, 2016, 49–66. doi: 10.1007/978-3-319-43838-2.  Google Scholar

[9]

H.-M. Pai, A differential game formulation of a controlled network, Queueing Syst., 64 (2010), 325-358.  doi: 10.1007/s11134-009-9161-6.  Google Scholar

[10]

L. A. PetrosianE. V. Gromova and S. V. Pogozhev, Strong time-consistent subset of core in cooperative differential games with finite time horizon, Autom. Remote Control, 79 (2018), 1912-1928.  doi: 10.5555/3288409.3288431.  Google Scholar

[11]

L. A. Petrosjan, The shapley value for differential games, in New trends in dynamic games and applications, Ann. Internat. Soc. Dynam. Games, 3, Birkhäuser Boston, Boston, MA, 1995, 409–417.  Google Scholar

[12]

L. A. Petrosyan, Cooperative differential games on networks, Trudy Inst. Mat. i Mekh. UrO RAN, 16 (2010), 143-150.   Google Scholar

[13]

L. A. Petrosyan and A. A. Sedakov, Multistage networking games with full information, Matematicheskaya Teoriya Igr I ee Prilozheniya, 2 (2009), 66-81.   Google Scholar

[14]

L. Petrosyan and G. Zaccour, Time-consistent shapley value allocation of pollution cost reduction, J. Econom. Dynam. Control, 27 (2003), 381-398.  doi: 10.1016/S0165-1889(01)00053-7.  Google Scholar

[15] L. S. Shapley, A value for n-person games,in Contributions to the Theory of Games, vol. 2, Annals of Mathematics Studies, 28, Princeton University Press, Princeton, NJ, 1953.   Google Scholar
[16]

B.-W. Wie, A differential game model of Nash equilibrium on a congested traffic network, Networks, 23 (1993), 557-565.  doi: 10.1002/net.3230230606.  Google Scholar

[17]

B. W. Wie, A differential game approach to the dynamic mixed behavior traffic network equilibrium problem, European J. Oper. Res., 83 (1995), 117-136.   Google Scholar

[18]

D. W. K. Yeung, Subgame consistent shapley value imputation for cost-saving joint ventures, Mathematical Game Theory and Applications, 2 (2010), 137-149.   Google Scholar

[19]

D. W. K. Yeung and L. A. Petrosyan, Subgame consistent cooperative solutions in stochastic differential games, J. Optim. Theory Appl., 120 (2004), 651-666.  doi: 10.1023/B:JOTA.0000025714.04164.e4.  Google Scholar

[20]

D. W. K. Yeung and L. A. Petrosyan, Subgame consistent cooperation: A comprehensive treatise, in Theory and Decision Library C., 47, Springer, Singapore, 2016.  Google Scholar

[21]

D. W. K. Yeung and L. A. Petrosyan, Dynamic Shapley Value and Dynamic Nash Bargaining, Nova Science, New York, 2018. Google Scholar

[22]

H. Zhang, L. V. Jiang, S. Huang, J. Wang and Y. Zhang, Attack-defense differential game model for network defense strategy selection, IEEE Access, (2018). doi: 10.1109/ACCESS.2018.2880214.  Google Scholar

[1]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[2]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[3]

David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial & Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121

[4]

Qingfeng Zhu, Yufeng Shi. Nonzero-sum differential game of backward doubly stochastic systems with delay and applications. Mathematical Control & Related Fields, 2021, 11 (1) : 73-94. doi: 10.3934/mcrf.2020028

[5]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[6]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[7]

Guangjun Shen, Xueying Wu, Xiuwei Yin. Stabilization of stochastic differential equations driven by G-Lévy process with discrete-time feedback control. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 755-774. doi: 10.3934/dcdsb.2020133

[8]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[9]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[10]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[11]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[12]

Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049

[13]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, 2021, 14 (1) : 115-148. doi: 10.3934/krm.2020051

[14]

Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381

[15]

Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060

[16]

Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155

[17]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[18]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[19]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[20]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

 Impact Factor: 

Metrics

  • PDF downloads (69)
  • HTML views (308)
  • Cited by (0)

Other articles
by authors

[Back to Top]