April  2021, 8(2): 151-166. doi: 10.3934/jdg.2020021

Shapley value for differential network games: Theory and application

1. 

St. Petersburg State University, Univereitetskaya Nab. 7/9 Saint-Petersburg, Russia

2. 

SRS Consortium for Advanced Study in Cooperative Dynamic Games, Shue Yan University, 10 Wai Tsui Cres, North Point, Hong Kong

* Corresponding author: Leon Petrosyan

Received  December 2019 Revised  December 2019 Published  April 2021 Early access  July 2020

Fund Project: The first author is supported by Russian Science Foundation the grant Optimal Behavior in Conflict-Controlled Systems 17-11-01079

This paper presents a time-consistent dynamic Shapley value imputation for a class of differential network games. A novel form for measuring the worth of coalitions – named as cooperative-trajectory characteristic function – is developed for the Shapley value imputation. This new class of characteristic functions is evaluated along the cooperative trajectory. It measures the worth of coalitions under the process of cooperation instead of under min-max confrontation or the Nash non-cooperative stance. The resultant dynamic Shapley value imputation yields a new cooperative solution in differential network games.

Citation: Leon Petrosyan, David Yeung. Shapley value for differential network games: Theory and application. Journal of Dynamics and Games, 2021, 8 (2) : 151-166. doi: 10.3934/jdg.2020021
References:
[1]

H. Cao, E. Ertin and A. Arora, MiniMax equilibrium of networked differential games, ACM Transactions on Autonomous and Adaptive Systems, 3 (1963). doi: 10.1145/1452001.1452004.

[2]

Y. V. Chirkova, Optimal calls to a 2-server with loss and random access, Autom. Remote Control, 78 (2017), 557-580.  doi: 10.1134/s0005117917030146.

[3]

H. Gao and Y. Pankratova, Cooperation in dynamic network games, Contributions to Game Theory and Management, 10 (2017), 42-67. 

[4]

E. Gromova, The shapley value as a sustainable cooperative solution in differential games of three players, in Recent Advances in Game Theory and Applications, Static Dyn. Game Theory Found. Appl., Birkhäuser/Springer, Cham, 2016. doi: 10.1007/978-3-319-43838-2\_4.

[5]

R. Isaacs, Differential Games, Wiley, New York, 1965.

[6]

N. N. Krasovski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$, Control of a Dynamic System, Nauka, Moskow, 1985.

[7] V. Mazalov and J.V. Chirkova, Networking Games: Network Forming Games and Games on Networks, Academic Press, 2019. 
[8]

M. A. G. Meza and J. D. Lopez-Barrientos, A Differential game of a duopoly with network externalities, in Recent Advances in Game Theory and Applications, Static Dyn. Game Theory Found. Appl., Birkhäuser/Springer, Cham, 2016, 49–66. doi: 10.1007/978-3-319-43838-2.

[9]

H.-M. Pai, A differential game formulation of a controlled network, Queueing Syst., 64 (2010), 325-358.  doi: 10.1007/s11134-009-9161-6.

[10]

L. A. PetrosianE. V. Gromova and S. V. Pogozhev, Strong time-consistent subset of core in cooperative differential games with finite time horizon, Autom. Remote Control, 79 (2018), 1912-1928.  doi: 10.5555/3288409.3288431.

[11]

L. A. Petrosjan, The shapley value for differential games, in New trends in dynamic games and applications, Ann. Internat. Soc. Dynam. Games, 3, Birkhäuser Boston, Boston, MA, 1995, 409–417.

[12]

L. A. Petrosyan, Cooperative differential games on networks, Trudy Inst. Mat. i Mekh. UrO RAN, 16 (2010), 143-150. 

[13]

L. A. Petrosyan and A. A. Sedakov, Multistage networking games with full information, Matematicheskaya Teoriya Igr I ee Prilozheniya, 2 (2009), 66-81. 

[14]

L. Petrosyan and G. Zaccour, Time-consistent shapley value allocation of pollution cost reduction, J. Econom. Dynam. Control, 27 (2003), 381-398.  doi: 10.1016/S0165-1889(01)00053-7.

[15] L. S. Shapley, A value for n-person games,in Contributions to the Theory of Games, vol. 2, Annals of Mathematics Studies, 28, Princeton University Press, Princeton, NJ, 1953. 
[16]

B.-W. Wie, A differential game model of Nash equilibrium on a congested traffic network, Networks, 23 (1993), 557-565.  doi: 10.1002/net.3230230606.

[17]

B. W. Wie, A differential game approach to the dynamic mixed behavior traffic network equilibrium problem, European J. Oper. Res., 83 (1995), 117-136. 

[18]

D. W. K. Yeung, Subgame consistent shapley value imputation for cost-saving joint ventures, Mathematical Game Theory and Applications, 2 (2010), 137-149. 

[19]

D. W. K. Yeung and L. A. Petrosyan, Subgame consistent cooperative solutions in stochastic differential games, J. Optim. Theory Appl., 120 (2004), 651-666.  doi: 10.1023/B:JOTA.0000025714.04164.e4.

[20]

D. W. K. Yeung and L. A. Petrosyan, Subgame consistent cooperation: A comprehensive treatise, in Theory and Decision Library C., 47, Springer, Singapore, 2016.

[21]

D. W. K. Yeung and L. A. Petrosyan, Dynamic Shapley Value and Dynamic Nash Bargaining, Nova Science, New York, 2018.

[22]

H. Zhang, L. V. Jiang, S. Huang, J. Wang and Y. Zhang, Attack-defense differential game model for network defense strategy selection, IEEE Access, (2018). doi: 10.1109/ACCESS.2018.2880214.

show all references

References:
[1]

H. Cao, E. Ertin and A. Arora, MiniMax equilibrium of networked differential games, ACM Transactions on Autonomous and Adaptive Systems, 3 (1963). doi: 10.1145/1452001.1452004.

[2]

Y. V. Chirkova, Optimal calls to a 2-server with loss and random access, Autom. Remote Control, 78 (2017), 557-580.  doi: 10.1134/s0005117917030146.

[3]

H. Gao and Y. Pankratova, Cooperation in dynamic network games, Contributions to Game Theory and Management, 10 (2017), 42-67. 

[4]

E. Gromova, The shapley value as a sustainable cooperative solution in differential games of three players, in Recent Advances in Game Theory and Applications, Static Dyn. Game Theory Found. Appl., Birkhäuser/Springer, Cham, 2016. doi: 10.1007/978-3-319-43838-2\_4.

[5]

R. Isaacs, Differential Games, Wiley, New York, 1965.

[6]

N. N. Krasovski${\rm{\mathord{\buildrel{\lower3pt\hbox{$\scriptscriptstyle\smile$}} \over i} }}$, Control of a Dynamic System, Nauka, Moskow, 1985.

[7] V. Mazalov and J.V. Chirkova, Networking Games: Network Forming Games and Games on Networks, Academic Press, 2019. 
[8]

M. A. G. Meza and J. D. Lopez-Barrientos, A Differential game of a duopoly with network externalities, in Recent Advances in Game Theory and Applications, Static Dyn. Game Theory Found. Appl., Birkhäuser/Springer, Cham, 2016, 49–66. doi: 10.1007/978-3-319-43838-2.

[9]

H.-M. Pai, A differential game formulation of a controlled network, Queueing Syst., 64 (2010), 325-358.  doi: 10.1007/s11134-009-9161-6.

[10]

L. A. PetrosianE. V. Gromova and S. V. Pogozhev, Strong time-consistent subset of core in cooperative differential games with finite time horizon, Autom. Remote Control, 79 (2018), 1912-1928.  doi: 10.5555/3288409.3288431.

[11]

L. A. Petrosjan, The shapley value for differential games, in New trends in dynamic games and applications, Ann. Internat. Soc. Dynam. Games, 3, Birkhäuser Boston, Boston, MA, 1995, 409–417.

[12]

L. A. Petrosyan, Cooperative differential games on networks, Trudy Inst. Mat. i Mekh. UrO RAN, 16 (2010), 143-150. 

[13]

L. A. Petrosyan and A. A. Sedakov, Multistage networking games with full information, Matematicheskaya Teoriya Igr I ee Prilozheniya, 2 (2009), 66-81. 

[14]

L. Petrosyan and G. Zaccour, Time-consistent shapley value allocation of pollution cost reduction, J. Econom. Dynam. Control, 27 (2003), 381-398.  doi: 10.1016/S0165-1889(01)00053-7.

[15] L. S. Shapley, A value for n-person games,in Contributions to the Theory of Games, vol. 2, Annals of Mathematics Studies, 28, Princeton University Press, Princeton, NJ, 1953. 
[16]

B.-W. Wie, A differential game model of Nash equilibrium on a congested traffic network, Networks, 23 (1993), 557-565.  doi: 10.1002/net.3230230606.

[17]

B. W. Wie, A differential game approach to the dynamic mixed behavior traffic network equilibrium problem, European J. Oper. Res., 83 (1995), 117-136. 

[18]

D. W. K. Yeung, Subgame consistent shapley value imputation for cost-saving joint ventures, Mathematical Game Theory and Applications, 2 (2010), 137-149. 

[19]

D. W. K. Yeung and L. A. Petrosyan, Subgame consistent cooperative solutions in stochastic differential games, J. Optim. Theory Appl., 120 (2004), 651-666.  doi: 10.1023/B:JOTA.0000025714.04164.e4.

[20]

D. W. K. Yeung and L. A. Petrosyan, Subgame consistent cooperation: A comprehensive treatise, in Theory and Decision Library C., 47, Springer, Singapore, 2016.

[21]

D. W. K. Yeung and L. A. Petrosyan, Dynamic Shapley Value and Dynamic Nash Bargaining, Nova Science, New York, 2018.

[22]

H. Zhang, L. V. Jiang, S. Huang, J. Wang and Y. Zhang, Attack-defense differential game model for network defense strategy selection, IEEE Access, (2018). doi: 10.1109/ACCESS.2018.2880214.

[1]

Abbas Ja'afaru Badakaya, Aminu Sulaiman Halliru, Jamilu Adamu. Game value for a pursuit-evasion differential game problem in a Hilbert space. Journal of Dynamics and Games, 2022, 9 (1) : 1-12. doi: 10.3934/jdg.2021019

[2]

Yan-An Hwang, Yu-Hsien Liao. Reduction and dynamic approach for the multi-choice Shapley value. Journal of Industrial and Management Optimization, 2013, 9 (4) : 885-892. doi: 10.3934/jimo.2013.9.885

[3]

Weijun Meng, Jingtao Shi. A linear quadratic stochastic Stackelberg differential game with time delay. Mathematical Control and Related Fields, 2021  doi: 10.3934/mcrf.2021035

[4]

Jun Huang, Ying Peng, Ruwen Tan, Chunxiang Guo. Alliance strategy of construction and demolition waste recycling based on the modified shapley value under government regulation. Journal of Industrial and Management Optimization, 2021, 17 (6) : 3183-3207. doi: 10.3934/jimo.2020113

[5]

Gaidi Li, Jiating Shao, Dachuan Xu, Wen-Qing Xu. The warehouse-retailer network design game. Journal of Industrial and Management Optimization, 2015, 11 (1) : 291-305. doi: 10.3934/jimo.2015.11.291

[6]

Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete and Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380

[7]

Tomasz R. Bielecki, Igor Cialenco, Marcin Pitera. A survey of time consistency of dynamic risk measures and dynamic performance measures in discrete time: LM-measure perspective. Probability, Uncertainty and Quantitative Risk, 2017, 2 (0) : 3-. doi: 10.1186/s41546-017-0012-9

[8]

Jing Zhang, Jianquan Lu, Jinde Cao, Wei Huang, Jianhua Guo, Yun Wei. Traffic congestion pricing via network congestion game approach. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1553-1567. doi: 10.3934/dcdss.2020378

[9]

Mark Broom, Chris Cannings. Game theoretical modelling of a dynamically evolving network Ⅰ: General target sequences. Journal of Dynamics and Games, 2017, 4 (4) : 285-318. doi: 10.3934/jdg.2017016

[10]

Chris Cannings, Mark Broom. Game theoretical modelling of a dynamically evolving network Ⅱ: Target sequences of score 1. Journal of Dynamics and Games, 2020, 7 (1) : 37-64. doi: 10.3934/jdg.2020003

[11]

Pierre Cardaliaguet, Chloé Jimenez, Marc Quincampoix. Pure and Random strategies in differential game with incomplete informations. Journal of Dynamics and Games, 2014, 1 (3) : 363-375. doi: 10.3934/jdg.2014.1.363

[12]

Nidhal Gammoudi, Hasnaa Zidani. A differential game control problem with state constraints. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022008

[13]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics and Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[14]

David W. K. Yeung, Yingxuan Zhang, Hongtao Bai, Sardar M. N. Islam. Collaborative environmental management for transboundary air pollution problems: A differential levies game. Journal of Industrial and Management Optimization, 2021, 17 (2) : 517-531. doi: 10.3934/jimo.2019121

[15]

Kai Du, Jianhui Huang, Zhen Wu. Linear quadratic mean-field-game of backward stochastic differential systems. Mathematical Control and Related Fields, 2018, 8 (3&4) : 653-678. doi: 10.3934/mcrf.2018028

[16]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control and Related Fields, 2021, 11 (4) : 797-828. doi: 10.3934/mcrf.2020047

[17]

Mrinal K. Ghosh, Somnath Pradhan. A nonzero-sum risk-sensitive stochastic differential game in the orthant. Mathematical Control and Related Fields, 2022, 12 (2) : 343-370. doi: 10.3934/mcrf.2021025

[18]

Piermarco Cannarsa, Peter R. Wolenski. Semiconcavity of the value function for a class of differential inclusions. Discrete and Continuous Dynamical Systems, 2011, 29 (2) : 453-466. doi: 10.3934/dcds.2011.29.453

[19]

Fabio Bagagiolo, Rosario Maggistro, Raffaele Pesenti. Origin-to-destination network flow with path preferences and velocity controls: A mean field game-like approach. Journal of Dynamics and Games, 2021, 8 (4) : 359-380. doi: 10.3934/jdg.2021007

[20]

Ross Cressman, Vlastimil Křivan. Using chemical reaction network theory to show stability of distributional dynamics in game theory. Journal of Dynamics and Games, 2021  doi: 10.3934/jdg.2021030

 Impact Factor: 

Metrics

  • PDF downloads (410)
  • HTML views (789)
  • Cited by (1)

Other articles
by authors

[Back to Top]