# American Institute of Mathematical Sciences

April  2021, 8(2): 139-150. doi: 10.3934/jdg.2020023

## On the equal surplus sharing interval solutions and an application

 1 Süleyman Demirel University, Faculty of Economics and Administrative Sciences, Department of Business Administration, Isparta, 32260, Turkey 2 Usak University, Faculty of Education, Department of Mathematics and Science Education, Usak, 64000, Turkey 3 Süleyman Demirel University, Faculty of Arts and Sciences, Department of Mathematics, Isparta, 32260, Turkey

* Corresponding author: zeynepalparslan@yahoo.com

Received  November 2019 Revised  February 2020 Published  April 2021 Early access  July 2020

In this paper, we focus on the equal surplus sharing interval solutions for cooperative games, where the set of players are finite and the coalition values are interval numbers. We consider the properties of a class of equal surplus sharing interval solutions consisting of all convex combinations of them. Moreover, an application based on transportation interval situations is given. Finally, we propose three solution concepts, namely the interval Shapley value, ICIS-value and IENSC-value, for this application and these solution concepts are compared.

Citation: Osman Palanci, Mustafa Ekici, Sirma Zeynep Alparslan Gök. On the equal surplus sharing interval solutions and an application. Journal of Dynamics & Games, 2021, 8 (2) : 139-150. doi: 10.3934/jdg.2020023
##### References:

show all references

##### References:
Interval marginal vectors
 $\sigma$ $m_{1}^{\sigma}\left( w\right)$ $m_{2}^{\sigma}\left( w\right)$ $m_{3}^{\sigma}\left( w\right)$ $\sigma_{1} = \left( 1,2,3\right)$ $\left[ 0,0\right]$ $\left[ 6,20\right]$ $\left[ 5,8\right]$ $\sigma_{2} = \left( 1,3,2\right)$ $\left[ 0,0\right]$ $\left[ 6,10\right]$ $\left[ 5,18\right]$ $\sigma_{3} = \left( 2,1,3\right)$ $\left[ 6,20\right]$ $\left[ 0,0\right]$ $\left[ 5,8\right]$ $\sigma_{4} = \left( 2,3,1\right)$ $\left[ 11,28\right]$ $\left[ 0,0\right]$ $\left[ 0,0\right]$ $\sigma_{5} = \left( 3,1,2\right)$ $\left[ 5,18\right]$ $\left[ 6,10\right]$ $\left[ 0,0\right]$ $\sigma_{6} = \left( 3,2,1\right)$ $\left[ 11,28\right]$ $\left[ 0,0\right]$ $\left[ 0,0\right]$
 $\sigma$ $m_{1}^{\sigma}\left( w\right)$ $m_{2}^{\sigma}\left( w\right)$ $m_{3}^{\sigma}\left( w\right)$ $\sigma_{1} = \left( 1,2,3\right)$ $\left[ 0,0\right]$ $\left[ 6,20\right]$ $\left[ 5,8\right]$ $\sigma_{2} = \left( 1,3,2\right)$ $\left[ 0,0\right]$ $\left[ 6,10\right]$ $\left[ 5,18\right]$ $\sigma_{3} = \left( 2,1,3\right)$ $\left[ 6,20\right]$ $\left[ 0,0\right]$ $\left[ 5,8\right]$ $\sigma_{4} = \left( 2,3,1\right)$ $\left[ 11,28\right]$ $\left[ 0,0\right]$ $\left[ 0,0\right]$ $\sigma_{5} = \left( 3,1,2\right)$ $\left[ 5,18\right]$ $\left[ 6,10\right]$ $\left[ 0,0\right]$ $\sigma_{6} = \left( 3,2,1\right)$ $\left[ 11,28\right]$ $\left[ 0,0\right]$ $\left[ 0,0\right]$
The equal surplus sharing interval solutions of Example 5.4
 Interval Solutions Player 1 Player 2 Player 3 Interval Shapley value $\left[ 5\tfrac{1}{2},15\tfrac{2}{3}\right]$ $\left[ 3,6\tfrac{2}{3}\right]$ $\left[ 2\tfrac{1}{2},5\tfrac{2}{3}\right]$ ICIS-value $\left[ 3\tfrac{2}{3},9\tfrac{1}{3}\right]$ $\left[ 3\tfrac{2}{3},9\tfrac{1}{3}\right]$ $\left[ 3\tfrac{2}{3},9\tfrac{1}{3}\right]$ IENSC-value $\left[ 7\tfrac{1}{3},22\right]$ $\left[ 2\tfrac {1}{3},4\right]$ $\left[ 1\tfrac{1}{3},2\right]$
 Interval Solutions Player 1 Player 2 Player 3 Interval Shapley value $\left[ 5\tfrac{1}{2},15\tfrac{2}{3}\right]$ $\left[ 3,6\tfrac{2}{3}\right]$ $\left[ 2\tfrac{1}{2},5\tfrac{2}{3}\right]$ ICIS-value $\left[ 3\tfrac{2}{3},9\tfrac{1}{3}\right]$ $\left[ 3\tfrac{2}{3},9\tfrac{1}{3}\right]$ $\left[ 3\tfrac{2}{3},9\tfrac{1}{3}\right]$ IENSC-value $\left[ 7\tfrac{1}{3},22\right]$ $\left[ 2\tfrac {1}{3},4\right]$ $\left[ 1\tfrac{1}{3},2\right]$
 [1] Leon Petrosyan, David Yeung. Shapley value for differential network games: Theory and application. Journal of Dynamics & Games, 2021, 8 (2) : 151-166. doi: 10.3934/jdg.2020021 [2] Deng-Feng Li, Yin-Fang Ye, Wei Fei. Extension of generalized solidarity values to interval-valued cooperative games. Journal of Industrial & Management Optimization, 2020, 16 (2) : 919-931. doi: 10.3934/jimo.2018185 [3] İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics & Games, 2021, 8 (3) : 267-275. doi: 10.3934/jdg.2021010 [4] Yan-An Hwang, Yu-Hsien Liao. Reduction and dynamic approach for the multi-choice Shapley value. Journal of Industrial & Management Optimization, 2013, 9 (4) : 885-892. doi: 10.3934/jimo.2013.9.885 [5] Paulina Ávila-Torres, Fernando López-Irarragorri, Rafael Caballero, Yasmín Ríos-Solís. The multimodal and multiperiod urban transportation integrated timetable construction problem with demand uncertainty. Journal of Industrial & Management Optimization, 2018, 14 (2) : 447-472. doi: 10.3934/jimo.2017055 [6] Jun Huang, Ying Peng, Ruwen Tan, Chunxiang Guo. Alliance strategy of construction and demolition waste recycling based on the modified shapley value under government regulation. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3183-3207. doi: 10.3934/jimo.2020113 [7] Ekaterina Gromova, Ekaterina Marova, Dmitry Gromov. A substitute for the classical Neumann–Morgenstern characteristic function in cooperative differential games. Journal of Dynamics & Games, 2020, 7 (2) : 105-122. doi: 10.3934/jdg.2020007 [8] Zeyang Wang, Ovanes Petrosian. On class of non-transferable utility cooperative differential games with continuous updating. Journal of Dynamics & Games, 2020, 7 (4) : 291-302. doi: 10.3934/jdg.2020020 [9] Jiang-Xia Nan, Deng-Feng Li. Linear programming technique for solving interval-valued constraint matrix games. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1059-1070. doi: 10.3934/jimo.2014.10.1059 [10] Oliver Juarez-Romero, William Olvera-Lopez, Francisco Sanchez-Sanchez. A simple family of solutions for forest games. Journal of Dynamics & Games, 2017, 4 (2) : 87-96. doi: 10.3934/jdg.2017006 [11] Antonio Pumariño, Claudia Valls. On the double pendulum: An example of double resonant situations. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 413-448. doi: 10.3934/dcds.2004.11.413 [12] Changbing Hu, Yang Kuang, Bingtuan Li, Hao Liu. Spreading speeds and traveling wave solutions in cooperative integral-differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1663-1684. doi: 10.3934/dcdsb.2015.20.1663 [13] Marcello Lucia, Guido Sweers. Nondegeneracy of solutions for a class of cooperative systems on $\mathbb{R}^n$. Communications on Pure & Applied Analysis, 2021, 20 (12) : 4177-4193. doi: 10.3934/cpaa.2021152 [14] Xiao Tang, Yingying Zeng, Weinian Zhang. Interval homeomorphic solutions of a functional equation of nonautonomous iterations. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6967-6984. doi: 10.3934/dcds.2020214 [15] Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure & Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046 [16] Fabien Gensbittel, Miquel Oliu-Barton, Xavier Venel. Existence of the uniform value in zero-sum repeated games with a more informed controller. Journal of Dynamics & Games, 2014, 1 (3) : 411-445. doi: 10.3934/jdg.2014.1.411 [17] David Kinderlehrer, Adrian Tudorascu. Transport via mass transportation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 311-338. doi: 10.3934/dcdsb.2006.6.311 [18] Francesco Esposito. Symmetry and monotonicity properties of singular solutions to some cooperative semilinear elliptic systems involving critical nonlinearities. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 549-577. doi: 10.3934/dcds.2020022 [19] Wei Wang, Wanbiao Ma. Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3213-3235. doi: 10.3934/dcdsb.2018242 [20] Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

Impact Factor: