
-
Previous Article
Real option value and poverty trap
- JDG Home
- This Issue
-
Next Article
On class of non-transferable utility cooperative differential games with continuous updating
On the grey Baker-Thompson rule
1. | Süleyman Demirel University, Faculty of Engineering, Department of Industrial Engineering, Isparta, 32260, Turkey |
2. | Süleyman Demirel University, Faculty of Economics and Administrative Sciences, Department of Business Administration, Isparta, 32260, Turkey |
3. | Süleyman Demirel University, Faculty of Arts and Sciences, Department of Mathematics, Isparta, 32260, Turkey |
Cost sharing problems can arise from situations in which some service is provided to a variety of different customers who differ in the amount or type of service they need. One can think of and airports computers, telephones. This paper studies an airport problem which is concerned with the cost sharing of an airstrip between airplanes assuming that one airstrip is sufficient to serve all airplanes. Each airplane needs an airstrip whose length can be different across airplanes. Also, it is important how should the cost of each airstrip be shared among airplanes. The purpose of the present paper is to give an axiomatic characterization of the Baker-Thompson rule by using grey calculus. Further, it is shown that each of our main axioms (population fairness, smallest-cost consistency and balanced population impact) together with various combina tions of our minor axioms characterizes the best-known rule for the problem, namely the Baker-Thompson rule. Finally, it is demonstrated that the grey Shapley value of airport game and the grey Baker-Thompson rule coincides.
References:
[1] |
S. Z. A. Gök, On the interval Baker-Thompson rule, J. Appl. Math., 2012, Article ID 218792, 5 pp.
doi: 10.1155/2012/218792. |
[2] |
S. Z. A. Gök, R. Branzei and S. Tijs, Convex interval games, J. Appl. Math. Dec. Sci., 2009, Article ID 342089, 14 pp.
doi: 10.1155/2009/342089. |
[3] |
S. Z. A. Gök, R. Branzei and S. Tijs,
Airport interval games and their Shapley value, Oper. Res. Dec., 19 (2009b), 9-18.
|
[4] |
A. Çevik, G.-W. Weber and B. M. Eyüboğlu,
Voxel-MARS: A method for early detection of Alzheimer's disease by classification of structural brain MRI, Ann. Oper. Res., 258 (2017), 31-57.
doi: 10.1007/s10479-017-2405-7. |
[5] |
Y. Chun, C. C. Hu and C. H. Yeh,
Characterizations of the sequential equal contributions rule for the airport problem, Internat. J. Econom. Theory, 8 (2012), 77-85.
doi: 10.1111/j.1742-7363.2011.00175.x. |
[6] |
J. Baker Jr., Airport Runway Cost Impact Study, Report submitted to the Association of Local Transport Airlines, Jackson, Mississippi, 1965. Google Scholar |
[7] |
I. D. Baltas and A. N. Yannacopoulos,
Uncertainty and inside information, J. Dynam. Games, 3 (2016), 1-24.
doi: 10.3934/jdg.2016001. |
[8] |
S. K. Das, S. K. Roy and G.-W. Weber, An exact and a heuristic approach for the transportation-p-facility location problem, Comput. Manag. Sci., (2020).
doi: 10.1007/s10100-019-00610-7. |
[9] |
J. Deng,
Control problems of Grey systems, Syst. Contr. Lett., 5 (1982), 288-294.
doi: 10.1016/S0167-6911(82)80025-X. |
[10] |
J. Deng, Grey System Fundamental Method, Huazhong University of Science and Technology, China, 1985. Google Scholar |
[11] |
V. Fragnelli and M. E. Marina,
An axiomatic characterization of the Baker-Thompson rule, Econom. Lett., 107 (2010), 85-87.
doi: 10.1016/j.econlet.2009.12.033. |
[12] |
M. Ghoreishi, G.-W. Weber and A. Mirzazadeh,
An inventory model for non-instantaneous deteriorating items with partial backlogging, permissible delay in payments, inflation- and selling price-dependent demand and customer returns, Ann. Oper. Res., 226 (2015), 221-238.
doi: 10.1007/s10479-014-1739-7. |
[13] |
S. Khalilpourazari, A. Mirzazadeh, G.-W. Weber and S. H. R. Pasandideh,
A robust fuzzy approach for constrained multi-product economic production quantity with imperfect items and rework process, Optimization, 69 (2020), 6-90.
doi: 10.1080/02331934.2019.1630625. |
[14] |
E. Kropat, G.-W. Weber and S. Belen, Dynamical gene-environment networks under ellipsoidal uncertainty - Set-theoretic regression analysis based on ellipsoidal OR, in Dynamics, Games and Science I, Springer Proceedings in Mathematics, 1, Springer Berlin-Heidelberg, 2011,545–571.
doi: 10.1007/978-3-642-11456-4_35. |
[15] |
S. C. Littlechild and G. Owen,
A simple expression for the Shapley value in a special case, Manag. Sci., 20 (1973), 370-372.
doi: 10.1007/BF01766216. |
[16] |
S. C. Littlechild and G. F. Thompson, Aircraft landing fees: A game theory approach, Bell J. Econom., 8 (1977), 186-204. Google Scholar |
[17] |
S. Liu and Y. Lin, Grey Information: Theory and Practical Applications, Springer, Germany, 2006. Google Scholar |
[18] |
R. Lotfi, G.-W. Weber, S. M. Sajadifar and N. Mardani,
Interdependent demand in the two-period newsvendor problem, J. Indust. Manag. Optim., 16 (2020), 117-140.
doi: 10.3934/jimo.2018143. |
[19] |
R. B. Myerson,
Conference structures and fair allocation rules, Internat. J. Game Theory, 9 (1980), 169-182.
doi: 10.1007/BF01781371. |
[20] |
A. Özmen, G.-W. Weber, I. Batmaz and E. Kropat,
RCMARS: Robustification of CMARS with different scenarios under polyhedral uncertainty set, Commun. Nonlin. Sci. Numer. Simul., 16 (2011), 4780-4787.
doi: 10.1016/j.cnsns.2011.04.001. |
[21] |
O. Palancı, S. Z. A. Gök, S. Ergün and G.-W. Weber,
Cooperative grey games and grey Shapley value, Optimization, 64 (2015), 1657-1668.
doi: 10.1080/02331934.2014.956743. |
[22] |
T. Paksoy, E. Özceylan and G.-W. Weber,
Profit oriented supply chain network optimization, Cent. Eur. J. Oper. Res., 21 (2013), 455-478.
doi: 10.1007/s10100-012-0240-0. |
[23] |
E. Savku and G.-W. Weber,
A stochastic maximum principle for a Markov regime-switching jump-diffusion model with delay and an application to finance, J. Optim. Theory Appl. Springer, 179 (2018), 696-721.
doi: 10.1007/s10957-017-1159-3. |
[24] |
E. Qasım, S. Z. A. Gök, O. Palancı and G.-W. Weber, Airport situations and games with grey uncertainty, Internat. J. Indust. Eng. Oper. Res., 1 (2019), 51-59. Google Scholar |
[25] |
B. Z. Temoçin and G.-W. Weber,
Optimal control of stochastic hybrid system with jumps: A numerical approximation, J. Comput. Appl. Math., 259 (2014), 443-451.
doi: 10.1016/j.cam.2013.10.021. |
[26] |
S. Tijs, Introduction to Game Theory, Hindustan Book Agency, India, 2003. |
[27] |
E. B. Tirkolaee, A. Goli and G.-W. Weber, Multi-objective aggregate production planning model considering overtime and outsourcing options under fuzzy seasonal demand, in Advances in Manufacturing II. MANUFACTURING 2019. Lecture Notes in Mechanical Engineering, Springer, Cham, 2019. Google Scholar |
[28] |
G. F. Thompson, Airport Costs and Pricing, Unpublished Ph.D Dissertation, University of Birmingham, 1971. Google Scholar |
[29] |
G.-W. Weber, Ö. Uğur, P. Taylan and A. Tezel,
On optimization, dynamics and uncertainty: A tutorial for gene-environment networks, Netw. Comput. Biol. Disc. Appl. Math., 157 (2009), 2494-2513.
doi: 10.1016/j.dam.2008.06.030. |
[30] |
F. Yerlikaya-Özkurt and P. Taylan,
New computational methods for classification problems in the existence of outliers based on conic quadratic optimization, Commun. Statist.-Sim. Comput., 49 (2020), 753-770.
doi: 10.1080/03610918.2019.1661477. |
show all references
References:
[1] |
S. Z. A. Gök, On the interval Baker-Thompson rule, J. Appl. Math., 2012, Article ID 218792, 5 pp.
doi: 10.1155/2012/218792. |
[2] |
S. Z. A. Gök, R. Branzei and S. Tijs, Convex interval games, J. Appl. Math. Dec. Sci., 2009, Article ID 342089, 14 pp.
doi: 10.1155/2009/342089. |
[3] |
S. Z. A. Gök, R. Branzei and S. Tijs,
Airport interval games and their Shapley value, Oper. Res. Dec., 19 (2009b), 9-18.
|
[4] |
A. Çevik, G.-W. Weber and B. M. Eyüboğlu,
Voxel-MARS: A method for early detection of Alzheimer's disease by classification of structural brain MRI, Ann. Oper. Res., 258 (2017), 31-57.
doi: 10.1007/s10479-017-2405-7. |
[5] |
Y. Chun, C. C. Hu and C. H. Yeh,
Characterizations of the sequential equal contributions rule for the airport problem, Internat. J. Econom. Theory, 8 (2012), 77-85.
doi: 10.1111/j.1742-7363.2011.00175.x. |
[6] |
J. Baker Jr., Airport Runway Cost Impact Study, Report submitted to the Association of Local Transport Airlines, Jackson, Mississippi, 1965. Google Scholar |
[7] |
I. D. Baltas and A. N. Yannacopoulos,
Uncertainty and inside information, J. Dynam. Games, 3 (2016), 1-24.
doi: 10.3934/jdg.2016001. |
[8] |
S. K. Das, S. K. Roy and G.-W. Weber, An exact and a heuristic approach for the transportation-p-facility location problem, Comput. Manag. Sci., (2020).
doi: 10.1007/s10100-019-00610-7. |
[9] |
J. Deng,
Control problems of Grey systems, Syst. Contr. Lett., 5 (1982), 288-294.
doi: 10.1016/S0167-6911(82)80025-X. |
[10] |
J. Deng, Grey System Fundamental Method, Huazhong University of Science and Technology, China, 1985. Google Scholar |
[11] |
V. Fragnelli and M. E. Marina,
An axiomatic characterization of the Baker-Thompson rule, Econom. Lett., 107 (2010), 85-87.
doi: 10.1016/j.econlet.2009.12.033. |
[12] |
M. Ghoreishi, G.-W. Weber and A. Mirzazadeh,
An inventory model for non-instantaneous deteriorating items with partial backlogging, permissible delay in payments, inflation- and selling price-dependent demand and customer returns, Ann. Oper. Res., 226 (2015), 221-238.
doi: 10.1007/s10479-014-1739-7. |
[13] |
S. Khalilpourazari, A. Mirzazadeh, G.-W. Weber and S. H. R. Pasandideh,
A robust fuzzy approach for constrained multi-product economic production quantity with imperfect items and rework process, Optimization, 69 (2020), 6-90.
doi: 10.1080/02331934.2019.1630625. |
[14] |
E. Kropat, G.-W. Weber and S. Belen, Dynamical gene-environment networks under ellipsoidal uncertainty - Set-theoretic regression analysis based on ellipsoidal OR, in Dynamics, Games and Science I, Springer Proceedings in Mathematics, 1, Springer Berlin-Heidelberg, 2011,545–571.
doi: 10.1007/978-3-642-11456-4_35. |
[15] |
S. C. Littlechild and G. Owen,
A simple expression for the Shapley value in a special case, Manag. Sci., 20 (1973), 370-372.
doi: 10.1007/BF01766216. |
[16] |
S. C. Littlechild and G. F. Thompson, Aircraft landing fees: A game theory approach, Bell J. Econom., 8 (1977), 186-204. Google Scholar |
[17] |
S. Liu and Y. Lin, Grey Information: Theory and Practical Applications, Springer, Germany, 2006. Google Scholar |
[18] |
R. Lotfi, G.-W. Weber, S. M. Sajadifar and N. Mardani,
Interdependent demand in the two-period newsvendor problem, J. Indust. Manag. Optim., 16 (2020), 117-140.
doi: 10.3934/jimo.2018143. |
[19] |
R. B. Myerson,
Conference structures and fair allocation rules, Internat. J. Game Theory, 9 (1980), 169-182.
doi: 10.1007/BF01781371. |
[20] |
A. Özmen, G.-W. Weber, I. Batmaz and E. Kropat,
RCMARS: Robustification of CMARS with different scenarios under polyhedral uncertainty set, Commun. Nonlin. Sci. Numer. Simul., 16 (2011), 4780-4787.
doi: 10.1016/j.cnsns.2011.04.001. |
[21] |
O. Palancı, S. Z. A. Gök, S. Ergün and G.-W. Weber,
Cooperative grey games and grey Shapley value, Optimization, 64 (2015), 1657-1668.
doi: 10.1080/02331934.2014.956743. |
[22] |
T. Paksoy, E. Özceylan and G.-W. Weber,
Profit oriented supply chain network optimization, Cent. Eur. J. Oper. Res., 21 (2013), 455-478.
doi: 10.1007/s10100-012-0240-0. |
[23] |
E. Savku and G.-W. Weber,
A stochastic maximum principle for a Markov regime-switching jump-diffusion model with delay and an application to finance, J. Optim. Theory Appl. Springer, 179 (2018), 696-721.
doi: 10.1007/s10957-017-1159-3. |
[24] |
E. Qasım, S. Z. A. Gök, O. Palancı and G.-W. Weber, Airport situations and games with grey uncertainty, Internat. J. Indust. Eng. Oper. Res., 1 (2019), 51-59. Google Scholar |
[25] |
B. Z. Temoçin and G.-W. Weber,
Optimal control of stochastic hybrid system with jumps: A numerical approximation, J. Comput. Appl. Math., 259 (2014), 443-451.
doi: 10.1016/j.cam.2013.10.021. |
[26] |
S. Tijs, Introduction to Game Theory, Hindustan Book Agency, India, 2003. |
[27] |
E. B. Tirkolaee, A. Goli and G.-W. Weber, Multi-objective aggregate production planning model considering overtime and outsourcing options under fuzzy seasonal demand, in Advances in Manufacturing II. MANUFACTURING 2019. Lecture Notes in Mechanical Engineering, Springer, Cham, 2019. Google Scholar |
[28] |
G. F. Thompson, Airport Costs and Pricing, Unpublished Ph.D Dissertation, University of Birmingham, 1971. Google Scholar |
[29] |
G.-W. Weber, Ö. Uğur, P. Taylan and A. Tezel,
On optimization, dynamics and uncertainty: A tutorial for gene-environment networks, Netw. Comput. Biol. Disc. Appl. Math., 157 (2009), 2494-2513.
doi: 10.1016/j.dam.2008.06.030. |
[30] |
F. Yerlikaya-Özkurt and P. Taylan,
New computational methods for classification problems in the existence of outliers based on conic quadratic optimization, Commun. Statist.-Sim. Comput., 49 (2020), 753-770.
doi: 10.1080/03610918.2019.1661477. |

$\sigma $ | $m_{1}^{\sigma }\left(c^{\prime }\right) $ | $m_{2}^{\sigma }\left(c^{\prime }\right) $ | $m_{3}^{\sigma }\left(c^{\prime }\right) $ |
$\sigma _{1} = \left(1, 2, 3\right) $ | $m_{1}^{\sigma _{1}}\left(c^{\prime }\right) \in \left[30, 36\right] $ | $m_{2}^{\sigma _{1}}\left(c^{\prime }\right) \in \left[14, 18\right] $ | $m_{3}^{\sigma _{1}}\left(c^{\prime }\right) \in \left[16, 26\right] $ |
$\sigma _{2} = \left(1, 3, 2\right) $ | $m_{1}^{\sigma _{2}}\left(c^{\prime }\right) \in \left[30, 36\right] $ | $m_{2}^{\sigma _{2}}\left(c^{\prime }\right) \in \left[0, 0\right] $ | $m_{3}^{\sigma _{2}}\left(c^{\prime }\right) \in \left[30, 44\right] $ |
$\sigma _{3} = \left(2, 1, 3\right) $ | $m_{1}^{\sigma _{3}}\left(c^{\prime }\right) \in \left[0, 0\right] $ | $m_{2}^{\sigma _{3}}\left(c^{\prime }\right) \in \left[44, 54\right] $ | $m_{3}^{\sigma _{3}}\left(c^{\prime }\right) \in \left[16, 26\right] $ |
$\sigma _{4} = \left(2, 3, 1\right) $ | $m_{1}^{\sigma _{4}}\left(c^{\prime }\right) \in \left[0, 0\right] $ | $m_{2}^{\sigma _{4}}\left(c^{\prime }\right) \in \left[44, 54\right] $ | $m_{3}^{\sigma _{4}}\left(c^{\prime }\right) \in \left[16, 26\right] $ |
$\sigma _{5} = \left(3, 1, 2\right) $ | $m_{1}^{\sigma _{5}}\left(c^{\prime }\right) \in \left[0, 0\right] $ | $m_{2}^{\sigma _{5}}\left(c^{\prime }\right) \in \left[0, 0\right] $ | $m_{3}^{\sigma _{5}}\left(c^{\prime }\right) \in \left[60, 80\right] $ |
$\sigma _{6} = \left(3, 2, 1\right) $ | $m_{1}^{\sigma _{6}}\left(c^{\prime }\right) \in \left[0, 0\right] $ | $m_{2}^{\sigma _{6}}\left(c^{\prime }\right) \in \left[0, 0\right] $ | $m_{3}^{\sigma _{6}}\left(c^{\prime }\right) \in \left[60, 80\right] $ |
$\sigma $ | $m_{1}^{\sigma }\left(c^{\prime }\right) $ | $m_{2}^{\sigma }\left(c^{\prime }\right) $ | $m_{3}^{\sigma }\left(c^{\prime }\right) $ |
$\sigma _{1} = \left(1, 2, 3\right) $ | $m_{1}^{\sigma _{1}}\left(c^{\prime }\right) \in \left[30, 36\right] $ | $m_{2}^{\sigma _{1}}\left(c^{\prime }\right) \in \left[14, 18\right] $ | $m_{3}^{\sigma _{1}}\left(c^{\prime }\right) \in \left[16, 26\right] $ |
$\sigma _{2} = \left(1, 3, 2\right) $ | $m_{1}^{\sigma _{2}}\left(c^{\prime }\right) \in \left[30, 36\right] $ | $m_{2}^{\sigma _{2}}\left(c^{\prime }\right) \in \left[0, 0\right] $ | $m_{3}^{\sigma _{2}}\left(c^{\prime }\right) \in \left[30, 44\right] $ |
$\sigma _{3} = \left(2, 1, 3\right) $ | $m_{1}^{\sigma _{3}}\left(c^{\prime }\right) \in \left[0, 0\right] $ | $m_{2}^{\sigma _{3}}\left(c^{\prime }\right) \in \left[44, 54\right] $ | $m_{3}^{\sigma _{3}}\left(c^{\prime }\right) \in \left[16, 26\right] $ |
$\sigma _{4} = \left(2, 3, 1\right) $ | $m_{1}^{\sigma _{4}}\left(c^{\prime }\right) \in \left[0, 0\right] $ | $m_{2}^{\sigma _{4}}\left(c^{\prime }\right) \in \left[44, 54\right] $ | $m_{3}^{\sigma _{4}}\left(c^{\prime }\right) \in \left[16, 26\right] $ |
$\sigma _{5} = \left(3, 1, 2\right) $ | $m_{1}^{\sigma _{5}}\left(c^{\prime }\right) \in \left[0, 0\right] $ | $m_{2}^{\sigma _{5}}\left(c^{\prime }\right) \in \left[0, 0\right] $ | $m_{3}^{\sigma _{5}}\left(c^{\prime }\right) \in \left[60, 80\right] $ |
$\sigma _{6} = \left(3, 2, 1\right) $ | $m_{1}^{\sigma _{6}}\left(c^{\prime }\right) \in \left[0, 0\right] $ | $m_{2}^{\sigma _{6}}\left(c^{\prime }\right) \in \left[0, 0\right] $ | $m_{3}^{\sigma _{6}}\left(c^{\prime }\right) \in \left[60, 80\right] $ |
[1] |
Sergio Zamora. Tori can't collapse to an interval. Electronic Research Archive, , () : -. doi: 10.3934/era.2021005 |
[2] |
Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020 doi: 10.3934/eect.2020104 |
[3] |
Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052 |
[4] |
Sushil Kumar Dey, Bibhas C. Giri. Coordination of a sustainable reverse supply chain with revenue sharing contract. Journal of Industrial & Management Optimization, 2020 doi: 10.3934/jimo.2020165 |
[5] |
Laura Aquilanti, Simone Cacace, Fabio Camilli, Raul De Maio. A Mean Field Games model for finite mixtures of Bernoulli and categorical distributions. Journal of Dynamics & Games, 2020 doi: 10.3934/jdg.2020033 |
[6] |
Marek Macák, Róbert Čunderlík, Karol Mikula, Zuzana Minarechová. Computational optimization in solving the geodetic boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 987-999. doi: 10.3934/dcdss.2020381 |
[7] |
Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020 doi: 10.3934/dcdsb.2020354 |
[8] |
Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088 |
[9] |
Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053 |
[10] |
Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248 |
[11] |
Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020 doi: 10.3934/dcdss.2020442 |
[12] |
Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381 |
[13] |
Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020 doi: 10.3934/dcds.2020398 |
[14] |
Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174 |
[15] |
Kazunori Matsui. Sharp consistency estimates for a pressure-Poisson problem with Stokes boundary value problems. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1001-1015. doi: 10.3934/dcdss.2020380 |
[16] |
Tong Peng. Designing prorated lifetime warranty strategy for high-value and durable products under two-dimensional warranty. Journal of Industrial & Management Optimization, 2021, 17 (2) : 953-970. doi: 10.3934/jimo.2020006 |
[17] |
Vaibhav Mehandiratta, Mani Mehra, Günter Leugering. Existence results and stability analysis for a nonlinear fractional boundary value problem on a circular ring with an attached edge : A study of fractional calculus on metric graph. Networks & Heterogeneous Media, 2021 doi: 10.3934/nhm.2021003 |
[18] |
Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253 |
[19] |
Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136 |
[20] |
Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]