# American Institute of Mathematical Sciences

October  2020, 7(4): 303-315. doi: 10.3934/jdg.2020024

## On the grey Baker-Thompson rule

 1 Süleyman Demirel University, Faculty of Engineering, Department of Industrial Engineering, Isparta, 32260, Turkey 2 Süleyman Demirel University, Faculty of Economics and Administrative Sciences, Department of Business Administration, Isparta, 32260, Turkey 3 Süleyman Demirel University, Faculty of Arts and Sciences, Department of Mathematics, Isparta, 32260, Turkey

* Corresponding author: zeynepalparslan@yahoo.com

Received  December 2018 Revised  April 2020 Published  October 2020 Early access  August 2020

Cost sharing problems can arise from situations in which some service is provided to a variety of different customers who differ in the amount or type of service they need. One can think of and airports computers, telephones. This paper studies an airport problem which is concerned with the cost sharing of an airstrip between airplanes assuming that one airstrip is sufficient to serve all airplanes. Each airplane needs an airstrip whose length can be different across airplanes. Also, it is important how should the cost of each airstrip be shared among airplanes. The purpose of the present paper is to give an axiomatic characterization of the Baker-Thompson rule by using grey calculus. Further, it is shown that each of our main axioms (population fairness, smallest-cost consistency and balanced population impact) together with various combina tions of our minor axioms characterizes the best-known rule for the problem, namely the Baker-Thompson rule. Finally, it is demonstrated that the grey Shapley value of airport game and the grey Baker-Thompson rule coincides.

Citation: Mehmet Onur Olgun, Osman Palanci, Sirma Zeynep Alparslan Gök. On the grey Baker-Thompson rule. Journal of Dynamics & Games, 2020, 7 (4) : 303-315. doi: 10.3934/jdg.2020024
##### References:

show all references

##### References:
The flowchart of this study
Grey marginal vectors
 $\sigma$ $m_{1}^{\sigma }\left(c^{\prime }\right)$ $m_{2}^{\sigma }\left(c^{\prime }\right)$ $m_{3}^{\sigma }\left(c^{\prime }\right)$ $\sigma _{1} = \left(1, 2, 3\right)$ $m_{1}^{\sigma _{1}}\left(c^{\prime }\right) \in \left[30, 36\right]$ $m_{2}^{\sigma _{1}}\left(c^{\prime }\right) \in \left[14, 18\right]$ $m_{3}^{\sigma _{1}}\left(c^{\prime }\right) \in \left[16, 26\right]$ $\sigma _{2} = \left(1, 3, 2\right)$ $m_{1}^{\sigma _{2}}\left(c^{\prime }\right) \in \left[30, 36\right]$ $m_{2}^{\sigma _{2}}\left(c^{\prime }\right) \in \left[0, 0\right]$ $m_{3}^{\sigma _{2}}\left(c^{\prime }\right) \in \left[30, 44\right]$ $\sigma _{3} = \left(2, 1, 3\right)$ $m_{1}^{\sigma _{3}}\left(c^{\prime }\right) \in \left[0, 0\right]$ $m_{2}^{\sigma _{3}}\left(c^{\prime }\right) \in \left[44, 54\right]$ $m_{3}^{\sigma _{3}}\left(c^{\prime }\right) \in \left[16, 26\right]$ $\sigma _{4} = \left(2, 3, 1\right)$ $m_{1}^{\sigma _{4}}\left(c^{\prime }\right) \in \left[0, 0\right]$ $m_{2}^{\sigma _{4}}\left(c^{\prime }\right) \in \left[44, 54\right]$ $m_{3}^{\sigma _{4}}\left(c^{\prime }\right) \in \left[16, 26\right]$ $\sigma _{5} = \left(3, 1, 2\right)$ $m_{1}^{\sigma _{5}}\left(c^{\prime }\right) \in \left[0, 0\right]$ $m_{2}^{\sigma _{5}}\left(c^{\prime }\right) \in \left[0, 0\right]$ $m_{3}^{\sigma _{5}}\left(c^{\prime }\right) \in \left[60, 80\right]$ $\sigma _{6} = \left(3, 2, 1\right)$ $m_{1}^{\sigma _{6}}\left(c^{\prime }\right) \in \left[0, 0\right]$ $m_{2}^{\sigma _{6}}\left(c^{\prime }\right) \in \left[0, 0\right]$ $m_{3}^{\sigma _{6}}\left(c^{\prime }\right) \in \left[60, 80\right]$
 $\sigma$ $m_{1}^{\sigma }\left(c^{\prime }\right)$ $m_{2}^{\sigma }\left(c^{\prime }\right)$ $m_{3}^{\sigma }\left(c^{\prime }\right)$ $\sigma _{1} = \left(1, 2, 3\right)$ $m_{1}^{\sigma _{1}}\left(c^{\prime }\right) \in \left[30, 36\right]$ $m_{2}^{\sigma _{1}}\left(c^{\prime }\right) \in \left[14, 18\right]$ $m_{3}^{\sigma _{1}}\left(c^{\prime }\right) \in \left[16, 26\right]$ $\sigma _{2} = \left(1, 3, 2\right)$ $m_{1}^{\sigma _{2}}\left(c^{\prime }\right) \in \left[30, 36\right]$ $m_{2}^{\sigma _{2}}\left(c^{\prime }\right) \in \left[0, 0\right]$ $m_{3}^{\sigma _{2}}\left(c^{\prime }\right) \in \left[30, 44\right]$ $\sigma _{3} = \left(2, 1, 3\right)$ $m_{1}^{\sigma _{3}}\left(c^{\prime }\right) \in \left[0, 0\right]$ $m_{2}^{\sigma _{3}}\left(c^{\prime }\right) \in \left[44, 54\right]$ $m_{3}^{\sigma _{3}}\left(c^{\prime }\right) \in \left[16, 26\right]$ $\sigma _{4} = \left(2, 3, 1\right)$ $m_{1}^{\sigma _{4}}\left(c^{\prime }\right) \in \left[0, 0\right]$ $m_{2}^{\sigma _{4}}\left(c^{\prime }\right) \in \left[44, 54\right]$ $m_{3}^{\sigma _{4}}\left(c^{\prime }\right) \in \left[16, 26\right]$ $\sigma _{5} = \left(3, 1, 2\right)$ $m_{1}^{\sigma _{5}}\left(c^{\prime }\right) \in \left[0, 0\right]$ $m_{2}^{\sigma _{5}}\left(c^{\prime }\right) \in \left[0, 0\right]$ $m_{3}^{\sigma _{5}}\left(c^{\prime }\right) \in \left[60, 80\right]$ $\sigma _{6} = \left(3, 2, 1\right)$ $m_{1}^{\sigma _{6}}\left(c^{\prime }\right) \in \left[0, 0\right]$ $m_{2}^{\sigma _{6}}\left(c^{\prime }\right) \in \left[0, 0\right]$ $m_{3}^{\sigma _{6}}\left(c^{\prime }\right) \in \left[60, 80\right]$
 [1] Osman Palanci, Mustafa Ekici, Sirma Zeynep Alparslan Gök. On the equal surplus sharing interval solutions and an application. Journal of Dynamics & Games, 2021, 8 (2) : 139-150. doi: 10.3934/jdg.2020023 [2] Leon Petrosyan, David Yeung. Shapley value for differential network games: Theory and application. Journal of Dynamics & Games, 2021, 8 (2) : 151-166. doi: 10.3934/jdg.2020021 [3] Deng-Feng Li, Yin-Fang Ye, Wei Fei. Extension of generalized solidarity values to interval-valued cooperative games. Journal of Industrial & Management Optimization, 2020, 16 (2) : 919-931. doi: 10.3934/jimo.2018185 [4] İsmail Özcan, Sirma Zeynep Alparslan Gök. On cooperative fuzzy bubbly games. Journal of Dynamics & Games, 2021, 8 (3) : 267-275. doi: 10.3934/jdg.2021010 [5] Yan-An Hwang, Yu-Hsien Liao. Reduction and dynamic approach for the multi-choice Shapley value. Journal of Industrial & Management Optimization, 2013, 9 (4) : 885-892. doi: 10.3934/jimo.2013.9.885 [6] Paulina Ávila-Torres, Fernando López-Irarragorri, Rafael Caballero, Yasmín Ríos-Solís. The multimodal and multiperiod urban transportation integrated timetable construction problem with demand uncertainty. Journal of Industrial & Management Optimization, 2018, 14 (2) : 447-472. doi: 10.3934/jimo.2017055 [7] Jun Huang, Ying Peng, Ruwen Tan, Chunxiang Guo. Alliance strategy of construction and demolition waste recycling based on the modified shapley value under government regulation. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020113 [8] Ekaterina Gromova, Ekaterina Marova, Dmitry Gromov. A substitute for the classical Neumann–Morgenstern characteristic function in cooperative differential games. Journal of Dynamics & Games, 2020, 7 (2) : 105-122. doi: 10.3934/jdg.2020007 [9] Zeyang Wang, Ovanes Petrosian. On class of non-transferable utility cooperative differential games with continuous updating. Journal of Dynamics & Games, 2020, 7 (4) : 291-302. doi: 10.3934/jdg.2020020 [10] Jiang-Xia Nan, Deng-Feng Li. Linear programming technique for solving interval-valued constraint matrix games. Journal of Industrial & Management Optimization, 2014, 10 (4) : 1059-1070. doi: 10.3934/jimo.2014.10.1059 [11] Oliver Juarez-Romero, William Olvera-Lopez, Francisco Sanchez-Sanchez. A simple family of solutions for forest games. Journal of Dynamics & Games, 2017, 4 (2) : 87-96. doi: 10.3934/jdg.2017006 [12] Antonio Pumariño, Claudia Valls. On the double pendulum: An example of double resonant situations. Discrete & Continuous Dynamical Systems, 2004, 11 (2&3) : 413-448. doi: 10.3934/dcds.2004.11.413 [13] Changbing Hu, Yang Kuang, Bingtuan Li, Hao Liu. Spreading speeds and traveling wave solutions in cooperative integral-differential systems. Discrete & Continuous Dynamical Systems - B, 2015, 20 (6) : 1663-1684. doi: 10.3934/dcdsb.2015.20.1663 [14] Xiao Tang, Yingying Zeng, Weinian Zhang. Interval homeomorphic solutions of a functional equation of nonautonomous iterations. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6967-6984. doi: 10.3934/dcds.2020214 [15] Shou-Fu Tian. Initial-boundary value problems for the coupled modified Korteweg-de Vries equation on the interval. Communications on Pure & Applied Analysis, 2018, 17 (3) : 923-957. doi: 10.3934/cpaa.2018046 [16] Fabien Gensbittel, Miquel Oliu-Barton, Xavier Venel. Existence of the uniform value in zero-sum repeated games with a more informed controller. Journal of Dynamics & Games, 2014, 1 (3) : 411-445. doi: 10.3934/jdg.2014.1.411 [17] David Kinderlehrer, Adrian Tudorascu. Transport via mass transportation. Discrete & Continuous Dynamical Systems - B, 2006, 6 (2) : 311-338. doi: 10.3934/dcdsb.2006.6.311 [18] Francesco Esposito. Symmetry and monotonicity properties of singular solutions to some cooperative semilinear elliptic systems involving critical nonlinearities. Discrete & Continuous Dynamical Systems, 2020, 40 (1) : 549-577. doi: 10.3934/dcds.2020022 [19] Wei Wang, Wanbiao Ma. Global dynamics and travelling wave solutions for a class of non-cooperative reaction-diffusion systems with nonlocal infections. Discrete & Continuous Dynamical Systems - B, 2018, 23 (8) : 3213-3235. doi: 10.3934/dcdsb.2018242 [20] Jiamin Cao, Peixuan Weng. Single spreading speed and traveling wave solutions of a diffusive pioneer-climax model without cooperative property. Communications on Pure & Applied Analysis, 2017, 16 (4) : 1405-1426. doi: 10.3934/cpaa.2017067

Impact Factor:

## Tools

Article outline

Figures and Tables