October  2020, 7(4): 335-350. doi: 10.3934/jdg.2020026

Pricing equilibrium of transportation systems with behavioral commuters

1. 

Department of Decision Sciences and Managerial Economics, CUHK Business School, Chinese University of Hong Kong, Hong Kong SAR, China

2. 

Saint-Petersburg State University, St. Petersburg, Russia, Institute of Applied Mathematical Research, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia

3. 

Department of Economics, School of Economics and Management, Tsinghua University, Beijing, China, 100084

* Corresponding author: Vladimir V. Mazalov

Received  April 2020 Published  August 2020

We study Wardrop equilibrium in a transportation system with profit-maximizing firms and heterogeneous commuters. Standard commuters minimize the sum of monetary costs and equilibrium travel time in their route choice, while "oblivious" commuters choose the route with minimal idle time. Three possible scenarios can arise in equilibrium: A pooling scenario where all commuters make the same transport choice; A separating scenario where different types of commuters make different transport choices; A partial pooling scenario where some standard commuters make the same transport choice as the oblivious commuters. We characterize the equilibrium existence condition, derive equilibrium flows, prices and firms' profits in each scenario, and conduct comparative analyses on parameters representing route conditions and heterogeneity of commuters, respectively. The framework nests the standard model in which all commuters are standard as a special case, and also allows for the case in which all commuters are oblivious as the other extreme. Our study shows how the presence of behavioral commuters under different route conditions affects equilibrium behavior of commuters and firms, as well a the equilibrium outcome of the transportation system.

Citation: Jaimie W. Lien, Vladimir V. Mazalov, Jie Zheng. Pricing equilibrium of transportation systems with behavioral commuters. Journal of Dynamics & Games, 2020, 7 (4) : 335-350. doi: 10.3934/jdg.2020026
References:
[1]

C. F. CamererT. H. Ho and J. K.Chong, A cognitive hierarchy model of games, Quart. J. Econom., 119 (2004), 861-898.   Google Scholar

[2]

V. P. Crawford, Boundedly rational versus optimization-based models of strategic thinking and learning games, J. Econom. Lit., 51 (2013), 512-527.   Google Scholar

[3]

X. DiX. HeX. Guo and H. X. Liu, Braess paradox under the boundedly rational user equilibria, Trans. Res. Part B, 67 (2014), 86-108.  doi: 10.1016/j.trb.2014.04.005.  Google Scholar

[4]

X. Di and H. X. Liu, Boundedly rational route choice behavior: A review of models and methodologies, Trans. Res. Part B, 85 (2016), 142-179.  doi: 10.1016/j.trb.2016.01.002.  Google Scholar

[5]

W. FordJ. W. LienV. V. Mazalov and J. Zheng, Riding to Wall Street: Determinants of commute time using Citibike, Int. Journal of Logistics: Research and Applications, 22 (2019), 473-490.   Google Scholar

[6]

R. JouD. A. HensherY. Liu and C. Chiu, Urban commuters' mode-switching behaviour in Taipai, with an application of the bounded rationality principle, Urban Studies, 47 (2010), 650-665.   Google Scholar

[7]

G. KarakostasN. KimA. Viglas and H. Xia, On the degradation of performance for traffic networks with oblivious users, Trans. Res. Part B, 45 (2011), 364-371.   Google Scholar

[8]

Z. Kuang, V. V. Mazalov, X. Tang and J. Zheng, Transportation network with externalities, J. Comp. Appl. Math., (2020). doi: 10.1016/j.cam.2020.113091.  Google Scholar

[9]

Z. Kuang, Z. Lian, J. W. Lien and J. Zheng, Serial and parallel duopoly competition in two-part transportation routes, Trans. Res. Part E, 133 (2020), 101821. Google Scholar

[10]

J. W. LienV. V. MazalovA. V. Melnik and J. Zheng, Wardrop equilibrium for networks with the BPR latency function, Lecture Notes in Computer Science, 9869 (2016), 37-49.  doi: 10.1007/978-3-319-44914-2_4.  Google Scholar

[11]

J. L. Lien, H. Zhao and J. Zheng, Perception bias in Tullock contests, Working Paper, (2019). Google Scholar

[12]

H. S. Mahmassani and G. Chang, On boundedly rational user equilibrium in transportation systems, Trans. Sci., 21 (1987), 89-99.   Google Scholar

[13]

V. V. Mazalov and A. V. Melnik, Equilibrium prices and flows in the passenger traffic problem, Int. Game Theory Rev., 18 (2016). doi: 10.1142/S0219198916500018.  Google Scholar

[14]

C. SunL. Cheng and J. Ma, Travel time reliability with boundedly rational travelers, Transportmetrica A: Transport Science, 14 (2018), 210-229.   Google Scholar

[15]

T. TangX. Luo and K. Liu, Impacts of the driver's bounded rationality on the traffic running cost under the car-following model, Physica A, 457 (2016), 316-321.   Google Scholar

[16]

J. Wardrop, Some theoretical aspects of road traffic research, Proceedings of the Institution of Civil Engineers, Part II (1952), 325–278. doi: 10.1680/ipeds.1952.11362.  Google Scholar

[17]

H. Ye and H. Yang, Rational Behavior adjustment process with boundedly rational user equilibrium, Trans. Sci., 51 (2017), 968-980.   Google Scholar

[18]

C. Zhao and H. Huang, Experiment of boundedly rational route choice behavior and the model under satisficing rule, Trans. Res. Part C, 68 (2016), 22-37.   Google Scholar

show all references

References:
[1]

C. F. CamererT. H. Ho and J. K.Chong, A cognitive hierarchy model of games, Quart. J. Econom., 119 (2004), 861-898.   Google Scholar

[2]

V. P. Crawford, Boundedly rational versus optimization-based models of strategic thinking and learning games, J. Econom. Lit., 51 (2013), 512-527.   Google Scholar

[3]

X. DiX. HeX. Guo and H. X. Liu, Braess paradox under the boundedly rational user equilibria, Trans. Res. Part B, 67 (2014), 86-108.  doi: 10.1016/j.trb.2014.04.005.  Google Scholar

[4]

X. Di and H. X. Liu, Boundedly rational route choice behavior: A review of models and methodologies, Trans. Res. Part B, 85 (2016), 142-179.  doi: 10.1016/j.trb.2016.01.002.  Google Scholar

[5]

W. FordJ. W. LienV. V. Mazalov and J. Zheng, Riding to Wall Street: Determinants of commute time using Citibike, Int. Journal of Logistics: Research and Applications, 22 (2019), 473-490.   Google Scholar

[6]

R. JouD. A. HensherY. Liu and C. Chiu, Urban commuters' mode-switching behaviour in Taipai, with an application of the bounded rationality principle, Urban Studies, 47 (2010), 650-665.   Google Scholar

[7]

G. KarakostasN. KimA. Viglas and H. Xia, On the degradation of performance for traffic networks with oblivious users, Trans. Res. Part B, 45 (2011), 364-371.   Google Scholar

[8]

Z. Kuang, V. V. Mazalov, X. Tang and J. Zheng, Transportation network with externalities, J. Comp. Appl. Math., (2020). doi: 10.1016/j.cam.2020.113091.  Google Scholar

[9]

Z. Kuang, Z. Lian, J. W. Lien and J. Zheng, Serial and parallel duopoly competition in two-part transportation routes, Trans. Res. Part E, 133 (2020), 101821. Google Scholar

[10]

J. W. LienV. V. MazalovA. V. Melnik and J. Zheng, Wardrop equilibrium for networks with the BPR latency function, Lecture Notes in Computer Science, 9869 (2016), 37-49.  doi: 10.1007/978-3-319-44914-2_4.  Google Scholar

[11]

J. L. Lien, H. Zhao and J. Zheng, Perception bias in Tullock contests, Working Paper, (2019). Google Scholar

[12]

H. S. Mahmassani and G. Chang, On boundedly rational user equilibrium in transportation systems, Trans. Sci., 21 (1987), 89-99.   Google Scholar

[13]

V. V. Mazalov and A. V. Melnik, Equilibrium prices and flows in the passenger traffic problem, Int. Game Theory Rev., 18 (2016). doi: 10.1142/S0219198916500018.  Google Scholar

[14]

C. SunL. Cheng and J. Ma, Travel time reliability with boundedly rational travelers, Transportmetrica A: Transport Science, 14 (2018), 210-229.   Google Scholar

[15]

T. TangX. Luo and K. Liu, Impacts of the driver's bounded rationality on the traffic running cost under the car-following model, Physica A, 457 (2016), 316-321.   Google Scholar

[16]

J. Wardrop, Some theoretical aspects of road traffic research, Proceedings of the Institution of Civil Engineers, Part II (1952), 325–278. doi: 10.1680/ipeds.1952.11362.  Google Scholar

[17]

H. Ye and H. Yang, Rational Behavior adjustment process with boundedly rational user equilibrium, Trans. Sci., 51 (2017), 968-980.   Google Scholar

[18]

C. Zhao and H. Huang, Experiment of boundedly rational route choice behavior and the model under satisficing rule, Trans. Res. Part C, 68 (2016), 22-37.   Google Scholar

Figure 1.  2-Route Transportation System with Duopoly Firms and Heterogeneous Commuters
Figure 2.  The regions of optimal behavior of commuters and firms
[1]

Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021003

[2]

Puneet Pasricha, Anubha Goel. Pricing power exchange options with hawkes jump diffusion processes. Journal of Industrial & Management Optimization, 2021, 17 (1) : 133-149. doi: 10.3934/jimo.2019103

[3]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[4]

Musen Xue, Guowei Zhu. Partial myopia vs. forward-looking behaviors in a dynamic pricing and replenishment model for perishable items. Journal of Industrial & Management Optimization, 2021, 17 (2) : 633-648. doi: 10.3934/jimo.2019126

[5]

Mohamed Dellal, Bachir Bar. Global analysis of a model of competition in the chemostat with internal inhibitor. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1129-1148. doi: 10.3934/dcdsb.2020156

[6]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[7]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[8]

Yicheng Liu, Yipeng Chen, Jun Wu, Xiao Wang. Periodic consensus in network systems with general distributed processing delays. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2021002

[9]

Rajendra K C Khatri, Brendan J Caseria, Yifei Lou, Guanghua Xiao, Yan Cao. Automatic extraction of cell nuclei using dilated convolutional network. Inverse Problems & Imaging, 2021, 15 (1) : 27-40. doi: 10.3934/ipi.2020049

[10]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, A pricing option approach based on backward stochastic differential equation theory. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 969-969. doi: 10.3934/dcdss.2019065

[11]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[12]

Linfeng Mei, Feng-Bin Wang. Dynamics of phytoplankton species competition for light and nutrient with recycling in a water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020359

[13]

Lin Niu, Yi Wang, Xizhuang Xie. Carrying simplex in the Lotka-Volterra competition model with seasonal succession with applications. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021014

[14]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[15]

Hirofumi Izuhara, Shunsuke Kobayashi. Spatio-temporal coexistence in the cross-diffusion competition system. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 919-933. doi: 10.3934/dcdss.2020228

[16]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[17]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[18]

Editorial Office. Retraction: Honggang Yu, An efficient face recognition algorithm using the improved convolutional neural network. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 901-901. doi: 10.3934/dcdss.2019060

[19]

Yu-Jhe Huang, Zhong-Fu Huang, Jonq Juang, Yu-Hao Liang. Flocking of non-identical Cucker-Smale models on general coupling network. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1111-1127. doi: 10.3934/dcdsb.2020155

[20]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

 Impact Factor: 

Metrics

  • PDF downloads (106)
  • HTML views (238)
  • Cited by (0)

Other articles
by authors

[Back to Top]