October  2020, 7(4): 335-350. doi: 10.3934/jdg.2020026

Pricing equilibrium of transportation systems with behavioral commuters

1. 

Department of Decision Sciences and Managerial Economics, CUHK Business School, Chinese University of Hong Kong, Hong Kong SAR, China

2. 

Saint-Petersburg State University, St. Petersburg, Russia, Institute of Applied Mathematical Research, Karelian Research Center, Russian Academy of Sciences, Petrozavodsk, Russia

3. 

Department of Economics, School of Economics and Management, Tsinghua University, Beijing, China, 100084

* Corresponding author: Vladimir V. Mazalov

Received  April 2020 Published  August 2020

We study Wardrop equilibrium in a transportation system with profit-maximizing firms and heterogeneous commuters. Standard commuters minimize the sum of monetary costs and equilibrium travel time in their route choice, while "oblivious" commuters choose the route with minimal idle time. Three possible scenarios can arise in equilibrium: A pooling scenario where all commuters make the same transport choice; A separating scenario where different types of commuters make different transport choices; A partial pooling scenario where some standard commuters make the same transport choice as the oblivious commuters. We characterize the equilibrium existence condition, derive equilibrium flows, prices and firms' profits in each scenario, and conduct comparative analyses on parameters representing route conditions and heterogeneity of commuters, respectively. The framework nests the standard model in which all commuters are standard as a special case, and also allows for the case in which all commuters are oblivious as the other extreme. Our study shows how the presence of behavioral commuters under different route conditions affects equilibrium behavior of commuters and firms, as well a the equilibrium outcome of the transportation system.

Citation: Jaimie W. Lien, Vladimir V. Mazalov, Jie Zheng. Pricing equilibrium of transportation systems with behavioral commuters. Journal of Dynamics & Games, 2020, 7 (4) : 335-350. doi: 10.3934/jdg.2020026
References:
[1]

C. F. CamererT. H. Ho and J. K.Chong, A cognitive hierarchy model of games, Quart. J. Econom., 119 (2004), 861-898.   Google Scholar

[2]

V. P. Crawford, Boundedly rational versus optimization-based models of strategic thinking and learning games, J. Econom. Lit., 51 (2013), 512-527.   Google Scholar

[3]

X. DiX. HeX. Guo and H. X. Liu, Braess paradox under the boundedly rational user equilibria, Trans. Res. Part B, 67 (2014), 86-108.  doi: 10.1016/j.trb.2014.04.005.  Google Scholar

[4]

X. Di and H. X. Liu, Boundedly rational route choice behavior: A review of models and methodologies, Trans. Res. Part B, 85 (2016), 142-179.  doi: 10.1016/j.trb.2016.01.002.  Google Scholar

[5]

W. FordJ. W. LienV. V. Mazalov and J. Zheng, Riding to Wall Street: Determinants of commute time using Citibike, Int. Journal of Logistics: Research and Applications, 22 (2019), 473-490.   Google Scholar

[6]

R. JouD. A. HensherY. Liu and C. Chiu, Urban commuters' mode-switching behaviour in Taipai, with an application of the bounded rationality principle, Urban Studies, 47 (2010), 650-665.   Google Scholar

[7]

G. KarakostasN. KimA. Viglas and H. Xia, On the degradation of performance for traffic networks with oblivious users, Trans. Res. Part B, 45 (2011), 364-371.   Google Scholar

[8]

Z. Kuang, V. V. Mazalov, X. Tang and J. Zheng, Transportation network with externalities, J. Comp. Appl. Math., (2020). doi: 10.1016/j.cam.2020.113091.  Google Scholar

[9]

Z. Kuang, Z. Lian, J. W. Lien and J. Zheng, Serial and parallel duopoly competition in two-part transportation routes, Trans. Res. Part E, 133 (2020), 101821. Google Scholar

[10]

J. W. LienV. V. MazalovA. V. Melnik and J. Zheng, Wardrop equilibrium for networks with the BPR latency function, Lecture Notes in Computer Science, 9869 (2016), 37-49.  doi: 10.1007/978-3-319-44914-2_4.  Google Scholar

[11]

J. L. Lien, H. Zhao and J. Zheng, Perception bias in Tullock contests, Working Paper, (2019). Google Scholar

[12]

H. S. Mahmassani and G. Chang, On boundedly rational user equilibrium in transportation systems, Trans. Sci., 21 (1987), 89-99.   Google Scholar

[13]

V. V. Mazalov and A. V. Melnik, Equilibrium prices and flows in the passenger traffic problem, Int. Game Theory Rev., 18 (2016). doi: 10.1142/S0219198916500018.  Google Scholar

[14]

C. SunL. Cheng and J. Ma, Travel time reliability with boundedly rational travelers, Transportmetrica A: Transport Science, 14 (2018), 210-229.   Google Scholar

[15]

T. TangX. Luo and K. Liu, Impacts of the driver's bounded rationality on the traffic running cost under the car-following model, Physica A, 457 (2016), 316-321.   Google Scholar

[16]

J. Wardrop, Some theoretical aspects of road traffic research, Proceedings of the Institution of Civil Engineers, Part II (1952), 325–278. doi: 10.1680/ipeds.1952.11362.  Google Scholar

[17]

H. Ye and H. Yang, Rational Behavior adjustment process with boundedly rational user equilibrium, Trans. Sci., 51 (2017), 968-980.   Google Scholar

[18]

C. Zhao and H. Huang, Experiment of boundedly rational route choice behavior and the model under satisficing rule, Trans. Res. Part C, 68 (2016), 22-37.   Google Scholar

show all references

References:
[1]

C. F. CamererT. H. Ho and J. K.Chong, A cognitive hierarchy model of games, Quart. J. Econom., 119 (2004), 861-898.   Google Scholar

[2]

V. P. Crawford, Boundedly rational versus optimization-based models of strategic thinking and learning games, J. Econom. Lit., 51 (2013), 512-527.   Google Scholar

[3]

X. DiX. HeX. Guo and H. X. Liu, Braess paradox under the boundedly rational user equilibria, Trans. Res. Part B, 67 (2014), 86-108.  doi: 10.1016/j.trb.2014.04.005.  Google Scholar

[4]

X. Di and H. X. Liu, Boundedly rational route choice behavior: A review of models and methodologies, Trans. Res. Part B, 85 (2016), 142-179.  doi: 10.1016/j.trb.2016.01.002.  Google Scholar

[5]

W. FordJ. W. LienV. V. Mazalov and J. Zheng, Riding to Wall Street: Determinants of commute time using Citibike, Int. Journal of Logistics: Research and Applications, 22 (2019), 473-490.   Google Scholar

[6]

R. JouD. A. HensherY. Liu and C. Chiu, Urban commuters' mode-switching behaviour in Taipai, with an application of the bounded rationality principle, Urban Studies, 47 (2010), 650-665.   Google Scholar

[7]

G. KarakostasN. KimA. Viglas and H. Xia, On the degradation of performance for traffic networks with oblivious users, Trans. Res. Part B, 45 (2011), 364-371.   Google Scholar

[8]

Z. Kuang, V. V. Mazalov, X. Tang and J. Zheng, Transportation network with externalities, J. Comp. Appl. Math., (2020). doi: 10.1016/j.cam.2020.113091.  Google Scholar

[9]

Z. Kuang, Z. Lian, J. W. Lien and J. Zheng, Serial and parallel duopoly competition in two-part transportation routes, Trans. Res. Part E, 133 (2020), 101821. Google Scholar

[10]

J. W. LienV. V. MazalovA. V. Melnik and J. Zheng, Wardrop equilibrium for networks with the BPR latency function, Lecture Notes in Computer Science, 9869 (2016), 37-49.  doi: 10.1007/978-3-319-44914-2_4.  Google Scholar

[11]

J. L. Lien, H. Zhao and J. Zheng, Perception bias in Tullock contests, Working Paper, (2019). Google Scholar

[12]

H. S. Mahmassani and G. Chang, On boundedly rational user equilibrium in transportation systems, Trans. Sci., 21 (1987), 89-99.   Google Scholar

[13]

V. V. Mazalov and A. V. Melnik, Equilibrium prices and flows in the passenger traffic problem, Int. Game Theory Rev., 18 (2016). doi: 10.1142/S0219198916500018.  Google Scholar

[14]

C. SunL. Cheng and J. Ma, Travel time reliability with boundedly rational travelers, Transportmetrica A: Transport Science, 14 (2018), 210-229.   Google Scholar

[15]

T. TangX. Luo and K. Liu, Impacts of the driver's bounded rationality on the traffic running cost under the car-following model, Physica A, 457 (2016), 316-321.   Google Scholar

[16]

J. Wardrop, Some theoretical aspects of road traffic research, Proceedings of the Institution of Civil Engineers, Part II (1952), 325–278. doi: 10.1680/ipeds.1952.11362.  Google Scholar

[17]

H. Ye and H. Yang, Rational Behavior adjustment process with boundedly rational user equilibrium, Trans. Sci., 51 (2017), 968-980.   Google Scholar

[18]

C. Zhao and H. Huang, Experiment of boundedly rational route choice behavior and the model under satisficing rule, Trans. Res. Part C, 68 (2016), 22-37.   Google Scholar

Figure 1.  2-Route Transportation System with Duopoly Firms and Heterogeneous Commuters
Figure 2.  The regions of optimal behavior of commuters and firms
[1]

Qiang Fu, Yanlong Zhang, Yushu Zhu, Ting Li. Network centralities, demographic disparities, and voluntary participation. Mathematical Foundations of Computing, 2020, 3 (4) : 249-262. doi: 10.3934/mfc.2020011

[2]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[3]

Shipra Singh, Aviv Gibali, Xiaolong Qin. Cooperation in traffic network problems via evolutionary split variational inequalities. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020170

[4]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]