doi: 10.3934/jdg.2020028

Replicator dynamics: Old and new

Institut de Mathématiques Jussieu-PRG, Sorbonne Université, Campus P. & M. Curie, CNRS UMR 7586, 4 Place Jussieu, 75005 Paris, France

Received  October 2019 Published  September 2020

Fund Project: Part of this work was presented at "Journées Franco-Chiliennes d'Optimisation", Toulouse, July 2017, and dedicated to the memory of Felipe Alvarez. This research was partially supported by a PGMO grant COGLED. The author thanks Josef Hofbauer for many constructive comments and a referee for an extremely precise and helpful report

We introduce the unilateral version associated to the replicator dynamics and describe its connection to on-line learning procedures, in particular to the multiplicative weight algorithm. We show the interest of handling simultaneously discrete and continuous time analysis.

We then survey recent results on extensions of this dynamics as maximization of the cumulative outcome with alternative regularization functions and variable weights. This includes no regret algorithms, time average version and link to best reply dynamics in two person games, application to equilibria and variational inequalities, convergence properties in potential and dissipative games.

Citation: Sylvain Sorin. Replicator dynamics: Old and new. Journal of Dynamics & Games, doi: 10.3934/jdg.2020028
References:
[1]

E. Akin, The Geometry of Population Genetics, Springer, 1979.  Google Scholar

[2]

E. Akin and J. Hofbauer, Recurrence of the unfit, Mathematical Biosciences, 61 (1982), 51-62.  doi: 10.1016/0025-5564(82)90095-5.  Google Scholar

[3]

F. AlvarezJ. Bolte and O. Brahic, Hessian Riemannian gradient flows in convex programming, SIAM Journal on Control and Optimization, 43 (2004), 477-501.  doi: 10.1137/S0363012902419977.  Google Scholar

[4]

S. AroraE. Hazan and S. Kale, The multiplicative weights update method: A meta algorithm and applications, Theory of Computing, 8 (2012), 121-164.  doi: 10.4086/toc.2012.v008a006.  Google Scholar

[5]

P. Auer, N. Cesa–Bianchi, Y. Freund and R. E. Shapire, The nonstochastic multiarmed bandit problem, SIAM J. Comput., 32 (2002), 48–77. doi: 10.1137/S0097539701398375.  Google Scholar

[6]

R. J. Aumann, Subjectivity and correlation in randomized strategies, Journal of Mathematical Economics, 1 (1974), 67-96.  doi: 10.1016/0304–4068(74)90037–8.  Google Scholar

[7]

M. Benaim, Dynamics of stochastic approximation algorithms, Séminaire de Probabilités, XXXIII, 1709 (1999), 1–68. doi: 10.1007/BFb0096509.  Google Scholar

[8]

M. Benaim and M. Faure, Consistency of vanishingly smooth fictitious play, Mathematics of Operations Research, 38 (2013), 437–450. doi: 10.1287/moor.1120.0568.  Google Scholar

[9]

M. Benaim, J. Hofbauer and S. Sorin, Stochastic approximations and differential inclusions, SIAM J. Opt. and Control, 44 (2005), 328–348. doi: 10.1137/S0363012904439301.  Google Scholar

[10]

M. Benaim, J. Hofbauer and S. Sorin, Stochastic approximations and differential inclusions. Part Ⅱ: Applications, Mathematics of Operations Research, 31 (2006), 673–695. doi: 10.1287/moor.1060.0213.  Google Scholar

[11]

M. Benaim, J. Hofbauer and S. Sorin, Perturbations of set–valued dynamical systems, with applications to game theory, Dynamic Games and Applications, 2 (2012), 195–205. doi: 10.1007/s13235–012–0040–0.  Google Scholar

[12]

D. Blackwell, An analog of the minimax theorem for vector payoffs, Pacific Journal of Mathematics, 6 (1956), 1–8. doi: 10.2140/pjm.1956.6.1.  Google Scholar

[13]

A. Blum and Y. Mansour, From external to internal regret, Journal of Machine Learning Reserach, 8 (2007), 1307–1324. doi: 10.1007/11503415_42.  Google Scholar

[14]

I. M. Bomze, Dynamic aspects of evolutionary stability, Monatshefte Math., 110 (1990), 189–206. doi: 10.1007/BF01301675.  Google Scholar

[15]

G. W. Brown, Some notes on computation of games solutions, Report P–78, The Rand Corporation, 1949. Google Scholar

[16]

G. W. Brown, Iterative solution of games by fictitious play, in Koopmans T.C. (ed.), Activity Analysis of Production and Allocation, Wiley, (1951), 374–376.  Google Scholar

[17]

S. Bubeck, Convex optimization: Algorithms and complexity, Fondations and Trends in Machine Learning, 8 (2015), 231-357.   Google Scholar

[18]

N. Cesa–Bianchi and G. Lugosi, Potential–based algorithms in on–line prediction and game theory, Computational Learning Theory (Amsterdam, 2001), 48–64, Lecture Notes in Comput. Sci., 2111, Lecture Notes in Artificial Intelligence, Springer, Berlin, 2001. doi: 10.1007/3–540–44581–1_4.  Google Scholar

[19] N. Cesa–Bianchi and G. Lugosi, Prediction, Learning and Games, Cambridge University Press, 2006.  doi: 10.1017/CBO9780511546921.  Google Scholar
[20]

M.–W. Cheung, Imitative dynamics for games with continuous strategy space, Games and Economic Behavior, 99 (2016), 206-223.  doi: 10.1016/j.geb.2016.08.003.  Google Scholar

[21]

P. CoucheneyB. Gaujal and P. Mertikopoulos, Penalty–regulated dynamics and robust learning procedures in games, Mathematics of Operations Research, 40 (2015), 611-633.  doi: 10.1287/moor.2014.0687.  Google Scholar

[22]

T. Cover, Universal portfolios, Math. Finance, 1 (1991), 1-29.  doi: 10.1111/j.1467–9965.1991.tb00002.x.  Google Scholar

[23]

S. C. Dafermos, Traffic equilibrium and variational inequalities, Transportation Sci., 14 (1980), 42-54.  doi: 10.1287/trsc.14.1.42.  Google Scholar

[24]

P. Dupuis and A. Nagurney, Dynamical systems and variational inequalities, Ann. Oper. Res., 44 (1993), 9-42.  doi: 10.1007/BF02073589.  Google Scholar

[25]

M. FaureP. GaillardB. Gaujal and V. Perchet, Online learning and game theory. A quick overview with recent results and applications, ESAIM: Proceedings and Surveys, 51 (2015), 246-271.  doi: 10.1051/proc/201551014.  Google Scholar

[26]

D. Foster and R. Vohra, A randomization rule for selecting forecasts, Operations Research, 41 (1993), 704-707.   Google Scholar

[27]

D. Foster and R. Vohra, Regret in the on–line decision problem, Games and Economic Behavior, 29 (1999), 7–35. doi: 10.1006/game.1999.0740.  Google Scholar

[28]

Y. Freund and R. E. Schapire, Adaptive game playing using multiplicative weights, Games and Economic Behavior, 29 (1999), 79–103. doi: 10.1006/game.1999.0738.  Google Scholar

[29]

D. Fudenberg and D. K. Levine, Consistency and cautious fictitious play, Journal of Economic Dynamics and Control, 19 (1995), 1065–1089. doi: 10.1016/0165–1889(94)00819–4.  Google Scholar

[30] D. Fudenberg and D. K. Levine, The Theory of Learning in Games, MIT Press, 1998.   Google Scholar
[31]

D. Fudenberg and D. K. Levine, Conditional universal consistency, Games and Economic Behavior, 29 (1999), 104–130. doi: 10.1006/game.1998.0705.  Google Scholar

[32]

A. Gaunersdorfer and J. Hofbauer, Fictitious play, Shapley polygons and the replicator equation, Games and Economic Behavior, 11 (1995), 279-303.  doi: 10.1006/game.1995.1052.  Google Scholar

[33]

I. Gilboa and A. Matsui, Social stability and equilibrium, Econometrica, 59 (1991), 859–867. doi: 10.2307/2938230.  Google Scholar

[34]

J. Hannan, Approximation to Bayes risk in repeated plays, Contributions to the Theory of Games, III, Drescher M., A.W. Tucker and P. Wolfe eds., Princeton University Press, (1957), 97–139.  Google Scholar

[35]

C. Harris, On the rate of convergence of continuous time fictitious play, Games and Economic Behavior, 22 (1998), 238–259. doi: 10.1006/game.1997.0582.  Google Scholar

[36]

S. Hart, Adaptive heuristics, Econometrica, 73 (2005), 1401–1430. doi: 10.1111/j.1468–0262.2005.00625.x.  Google Scholar

[37]

S. Hart and A. Mas–Colell, A simple adaptive procedure leading to correlated equilibria, Econometrica, 68 (2000), 1127–1150. doi: 10.1111/1468–0262.00153.  Google Scholar

[38]

S. Hart and A. Mas–Colell, A general class of adaptive strategies, Journal of Economic Theory, 98 (2001), 26–54. doi: 10.1006/jeth.2000.2746.  Google Scholar

[39]

S. Hart and A. Mas–Colell, Regret–based continuous time dynamics, Games and Economic Behavior, 45 (2003), 375–394. doi: 10.1016/S0899–8256(03)00178–7.  Google Scholar

[40]

S. Hart and A. Mas–Colell, Uncoupled dynamics do not lead to Nash equilibria, American Economic Review, 93 (2003), 1830–1836. Google Scholar

[41]

S. Hart and A. Mas Colell, Simple Adaptive Strategies: From Regret–Matching to Uncoupled Dynamics, World Scientific Publishing, 2013. doi: 10.1142/8408.  Google Scholar

[42]

E. Hazan, The convex optimization approach to regret minimization, Optimization for machine learning, S. Sra, S. Nowozin, S. Wright eds, MIT Press, (2011), 287–303. Google Scholar

[43]

E. Hazan, Optimization for Machine Learning, https://arxiv.org/pdf/1909.03550.pdf, 2019. Google Scholar

[44]

J. Hofbauer, From Nash and Brown to Maynard Smith: Equilibria, dynamics and ESS, Selection, 1(2000), 81–88. Google Scholar

[45]

J. Hofbauer, Deterministic evolutionary game dynamics, in Evolutionary Game Dynamics, K. Sigmund ed., Proceedings of Symposia in Applied Mathematics, A.M.S., 69 (2011), 61–79. doi: 10.1090/psapm/069/2882634.  Google Scholar

[46]

J. Hofbauer and W. H. Sandholm, On the global convergence of stochastic fictitious play, Econometrica, 70 (2002), 2265–2294.  Google Scholar

[47]

J. Hofbauer and W. H. Sandholm, Stable games and their dynamics, Journal of Economic Theory, 144 (2009), 1665–1693, 1693.e4. doi: 10.1016/j.jet.2009.01.007.  Google Scholar

[48]

J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge U.P., 1998. doi: 10.1017/CBO9781139173179.  Google Scholar

[49]

J. Hofbauer and K. Sigmund, Evolutionary game dynamics, Bulletin of the A.M.S., 40 (2003), 479–519. doi: 10.1090/S0273–0979–03–00988–1.  Google Scholar

[50]

J. Hofbauer and S. Sorin, Best response dynamics for continuous zero–sum games, Discrete and Continuous Dynamical Systems–series B, 6 (2006), 215–224. doi: 10.3934/dcdsb.2006.6.215.  Google Scholar

[51]

J. Hofbauer, S. Sorin and Y. Viossat, Time average replicator and best reply dynamics, Mathematics of Operations Research, 34 (2009), 263–269. doi: 10.1287/moor.1080.0359.  Google Scholar

[52]

A. Kalai and S. Vempala, Efficient algorithms for online decision problems, Journal of Computer and System Sciences, 71 (2005), 291-307.  doi: 10.1016/j.jcss.2004.10.016.  Google Scholar

[53]

J. Kwon and P. Mertikopoulos, A continuous time approach to on–line optimization, Journal of Dynamics and Games, 4 (2017), 125-148.  doi: 10.3934/jdg.2017008.  Google Scholar

[54]

N. Littlestone and M. K. Warmuth, The weighted majority algorithm, Information and Computation, 108 (1994), 212–261. doi: 10.1006/inco.1994.1009.  Google Scholar

[55]

J. Maynard Smith, Evolution and the Theory of Games, Cambridge U.P., 1982. Google Scholar

[56]

P. Mertikopoulos and W. H. Sandholm, Learning in games via reinforcement and regularization, Mathematics of Operations Research, 41 (2016), 1297-1324.  doi: 10.1287/moor.2016.0778.  Google Scholar

[57]

P. Mertikopoulos and W. H. Sandholm, Riemannian game dynamics, Journal of Economic Theory, 177 (2018), 315-364.  doi: 10.1016/j.jet.2018.06.002.  Google Scholar

[58]

P. Mertikopoulos and Z. Zhou, Learning in games with continuous action sets and unknown payoff functions, Mathematical Programming, 173 (2019), 465-507.  doi: 10.1007/s10107–018–1254–8.  Google Scholar

[59]

D. Monderer and L. S. Shapley, Potential games, Games Econom. Behav., 14 (1996), 124-143.  doi: 10.1006/game.1996.0044.  Google Scholar

[60]

Y. Nesterov, Primal–dual subgradient methods for convex problems, Mathematical Programming, 120 (2009), 221-259.  doi: 10.1007/s10107–007–0149–x.  Google Scholar

[61]

V. Perchet, Approachability, regret and calibration: Implications and equivalences, Journal of Dynamics and Games, 1 (2014), 181-254.  doi: 10.3934/jdg.2014.1.181.  Google Scholar

[62]

V. Perchet, Exponential weight approachability, applications to calibration and regret minimization, Dynamic Games and Applications, 5 (2015), 136-153.  doi: 10.1007/s13235–014–0119–x.  Google Scholar

[63]

J. Robinson, An iterative method of solving a game, Annals of Mathematics, 54 (1951), 296–301. doi: 10.2307/1969530.  Google Scholar

[64] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.   Google Scholar
[65]

R. T. Rockafellar, Monotone operators associated with saddle–functions and minmax problems, Nonlinear Functional Analysis, F. Browder, ed., Proceedings of Symposia in Pure Math, AMS, 18 (1970), 241–250.  Google Scholar

[66]

A. Rustichini, Optimal properties of stimulus–response learning models, Games and Economic Behavior, 29 (1999), 244-273.  doi: 10.1006/game.1999.0712.  Google Scholar

[67]

W. H. Sandholm, Potential games with continuous player sets, Journal of Economic Theory, 97 (2001), 81-108.  doi: 10.1006/jeth.2000.2696.  Google Scholar

[68]

W. H. Sandholm, Large population potential games, Journal of Economic Theory, 144 (2009), 1710-1725.  doi: 10.1016/j.jet.2009.02.004.  Google Scholar

[69] W. H. Sandholm, Population Games and Evolutionary Dynamics, MIT Press, 2010.   Google Scholar
[70] W. H. Sandholm, Population Games and Deterministic Evolutionary Dynamics,, Economic Learning and Social Evolution. MIT Press, Cambridge, MA, 2010.   Google Scholar
[71]

S. Shahshahani, A new mathematical framework for the study of linkage and selection, Memoirs of the American Mathematical Society, 17 (1979), ix+34 pp. doi: 10.1090/memo/0211.  Google Scholar

[72]

S. Shalev–Shwartz, Online Learning and Online Convex Optimization, Foundations and Trends in Machine Learning, 4 (2012), 107-194.   Google Scholar

[73]

M. J. Smith, The existence, uniqueness and stability of traffic equilibria, Transportation Res., Part B, 13 (1979), 295-304.  doi: 10.1016/0191–2615(79)90022–5.  Google Scholar

[74]

M. J. Smith, The stability of a dynamic model of traffic assignment – an application of a method of Lyapunov, Transportation Sci., 18 (1984), 245-252.  doi: 10.1287/trsc.18.3.245.  Google Scholar

[75]

S. Sorin, Exponential weight algorithm in continuous time, Mathematical Programming, Ser. B, 116 (2009), 513–528. doi: 10.1007/s10107–007–0111–y.  Google Scholar

[76]

S. Sorin, On some global and unilateral adaptive dynamics, Evolutionary Game Dynamics, K. Sigmund (ed.), Proceedings of Symposia in Applied Mathematics, 69 (2011), 81–109. doi: 10.1090/psapm/069/2882635.  Google Scholar

[77]

S. Sorin and C. Wang, Finite composite games: Equilibria and dynamics, Journal of Dynamics and Games, 3 (2016), 101-120.  doi: 10.3934/jdg.2016005.  Google Scholar

[78]

G. Stoltz and G. Lugosi, Internal regret in on–line portfolio selection, Machine Learning, 59 (2005), 125-159.   Google Scholar

[79]

J. M. Swinkels, Adjustment dynamics and rational play in games, Games and Economic Behavior, 5 (1983), 455-484.  doi: 10.1006/game.1993.1025.  Google Scholar

[80]

P. Taylor and L. Jonker, Evolutionary stable strategies and game dynamics, Mathematical Biosciences, 40 (1978), 145–156. doi: 10.1016/0025–5564(78)90077–9.  Google Scholar

[81]

Y. Viossat, The replicator dynamics does not lead to correlated equilibria, Games and Economic Behavior, 59 (2007), 397–407. doi: 10.1016/j.geb.2006.09.001.  Google Scholar

[82]

Y. Viossat, Evolutionary dynamics may eliminate all strategies used in correlated equilibrium, Mathematical Social Sciences, 56 (2008), 27–43. doi: 10.1016/j.mathsocsci.2007.12.001.  Google Scholar

[83]

Y. Viossat and A. Zapechelnyuk, No–regret dynamics and fictitious play, Journal of Economic Theory, 148 (2013), 825-842.  doi: 10.1016/j.jet.2012.07.003.  Google Scholar

[84]

V. Vovk, Aggregating strategies, Proceedings of the 3rd Annual Conference on Computational Learning Theory, (1990), 371–383. Google Scholar

[85]

G. Wardrop, Some theoretical aspects of road traffic research, Proc. Inst. Civ. Eng., 1 (1952), 325–362. Google Scholar

show all references

References:
[1]

E. Akin, The Geometry of Population Genetics, Springer, 1979.  Google Scholar

[2]

E. Akin and J. Hofbauer, Recurrence of the unfit, Mathematical Biosciences, 61 (1982), 51-62.  doi: 10.1016/0025-5564(82)90095-5.  Google Scholar

[3]

F. AlvarezJ. Bolte and O. Brahic, Hessian Riemannian gradient flows in convex programming, SIAM Journal on Control and Optimization, 43 (2004), 477-501.  doi: 10.1137/S0363012902419977.  Google Scholar

[4]

S. AroraE. Hazan and S. Kale, The multiplicative weights update method: A meta algorithm and applications, Theory of Computing, 8 (2012), 121-164.  doi: 10.4086/toc.2012.v008a006.  Google Scholar

[5]

P. Auer, N. Cesa–Bianchi, Y. Freund and R. E. Shapire, The nonstochastic multiarmed bandit problem, SIAM J. Comput., 32 (2002), 48–77. doi: 10.1137/S0097539701398375.  Google Scholar

[6]

R. J. Aumann, Subjectivity and correlation in randomized strategies, Journal of Mathematical Economics, 1 (1974), 67-96.  doi: 10.1016/0304–4068(74)90037–8.  Google Scholar

[7]

M. Benaim, Dynamics of stochastic approximation algorithms, Séminaire de Probabilités, XXXIII, 1709 (1999), 1–68. doi: 10.1007/BFb0096509.  Google Scholar

[8]

M. Benaim and M. Faure, Consistency of vanishingly smooth fictitious play, Mathematics of Operations Research, 38 (2013), 437–450. doi: 10.1287/moor.1120.0568.  Google Scholar

[9]

M. Benaim, J. Hofbauer and S. Sorin, Stochastic approximations and differential inclusions, SIAM J. Opt. and Control, 44 (2005), 328–348. doi: 10.1137/S0363012904439301.  Google Scholar

[10]

M. Benaim, J. Hofbauer and S. Sorin, Stochastic approximations and differential inclusions. Part Ⅱ: Applications, Mathematics of Operations Research, 31 (2006), 673–695. doi: 10.1287/moor.1060.0213.  Google Scholar

[11]

M. Benaim, J. Hofbauer and S. Sorin, Perturbations of set–valued dynamical systems, with applications to game theory, Dynamic Games and Applications, 2 (2012), 195–205. doi: 10.1007/s13235–012–0040–0.  Google Scholar

[12]

D. Blackwell, An analog of the minimax theorem for vector payoffs, Pacific Journal of Mathematics, 6 (1956), 1–8. doi: 10.2140/pjm.1956.6.1.  Google Scholar

[13]

A. Blum and Y. Mansour, From external to internal regret, Journal of Machine Learning Reserach, 8 (2007), 1307–1324. doi: 10.1007/11503415_42.  Google Scholar

[14]

I. M. Bomze, Dynamic aspects of evolutionary stability, Monatshefte Math., 110 (1990), 189–206. doi: 10.1007/BF01301675.  Google Scholar

[15]

G. W. Brown, Some notes on computation of games solutions, Report P–78, The Rand Corporation, 1949. Google Scholar

[16]

G. W. Brown, Iterative solution of games by fictitious play, in Koopmans T.C. (ed.), Activity Analysis of Production and Allocation, Wiley, (1951), 374–376.  Google Scholar

[17]

S. Bubeck, Convex optimization: Algorithms and complexity, Fondations and Trends in Machine Learning, 8 (2015), 231-357.   Google Scholar

[18]

N. Cesa–Bianchi and G. Lugosi, Potential–based algorithms in on–line prediction and game theory, Computational Learning Theory (Amsterdam, 2001), 48–64, Lecture Notes in Comput. Sci., 2111, Lecture Notes in Artificial Intelligence, Springer, Berlin, 2001. doi: 10.1007/3–540–44581–1_4.  Google Scholar

[19] N. Cesa–Bianchi and G. Lugosi, Prediction, Learning and Games, Cambridge University Press, 2006.  doi: 10.1017/CBO9780511546921.  Google Scholar
[20]

M.–W. Cheung, Imitative dynamics for games with continuous strategy space, Games and Economic Behavior, 99 (2016), 206-223.  doi: 10.1016/j.geb.2016.08.003.  Google Scholar

[21]

P. CoucheneyB. Gaujal and P. Mertikopoulos, Penalty–regulated dynamics and robust learning procedures in games, Mathematics of Operations Research, 40 (2015), 611-633.  doi: 10.1287/moor.2014.0687.  Google Scholar

[22]

T. Cover, Universal portfolios, Math. Finance, 1 (1991), 1-29.  doi: 10.1111/j.1467–9965.1991.tb00002.x.  Google Scholar

[23]

S. C. Dafermos, Traffic equilibrium and variational inequalities, Transportation Sci., 14 (1980), 42-54.  doi: 10.1287/trsc.14.1.42.  Google Scholar

[24]

P. Dupuis and A. Nagurney, Dynamical systems and variational inequalities, Ann. Oper. Res., 44 (1993), 9-42.  doi: 10.1007/BF02073589.  Google Scholar

[25]

M. FaureP. GaillardB. Gaujal and V. Perchet, Online learning and game theory. A quick overview with recent results and applications, ESAIM: Proceedings and Surveys, 51 (2015), 246-271.  doi: 10.1051/proc/201551014.  Google Scholar

[26]

D. Foster and R. Vohra, A randomization rule for selecting forecasts, Operations Research, 41 (1993), 704-707.   Google Scholar

[27]

D. Foster and R. Vohra, Regret in the on–line decision problem, Games and Economic Behavior, 29 (1999), 7–35. doi: 10.1006/game.1999.0740.  Google Scholar

[28]

Y. Freund and R. E. Schapire, Adaptive game playing using multiplicative weights, Games and Economic Behavior, 29 (1999), 79–103. doi: 10.1006/game.1999.0738.  Google Scholar

[29]

D. Fudenberg and D. K. Levine, Consistency and cautious fictitious play, Journal of Economic Dynamics and Control, 19 (1995), 1065–1089. doi: 10.1016/0165–1889(94)00819–4.  Google Scholar

[30] D. Fudenberg and D. K. Levine, The Theory of Learning in Games, MIT Press, 1998.   Google Scholar
[31]

D. Fudenberg and D. K. Levine, Conditional universal consistency, Games and Economic Behavior, 29 (1999), 104–130. doi: 10.1006/game.1998.0705.  Google Scholar

[32]

A. Gaunersdorfer and J. Hofbauer, Fictitious play, Shapley polygons and the replicator equation, Games and Economic Behavior, 11 (1995), 279-303.  doi: 10.1006/game.1995.1052.  Google Scholar

[33]

I. Gilboa and A. Matsui, Social stability and equilibrium, Econometrica, 59 (1991), 859–867. doi: 10.2307/2938230.  Google Scholar

[34]

J. Hannan, Approximation to Bayes risk in repeated plays, Contributions to the Theory of Games, III, Drescher M., A.W. Tucker and P. Wolfe eds., Princeton University Press, (1957), 97–139.  Google Scholar

[35]

C. Harris, On the rate of convergence of continuous time fictitious play, Games and Economic Behavior, 22 (1998), 238–259. doi: 10.1006/game.1997.0582.  Google Scholar

[36]

S. Hart, Adaptive heuristics, Econometrica, 73 (2005), 1401–1430. doi: 10.1111/j.1468–0262.2005.00625.x.  Google Scholar

[37]

S. Hart and A. Mas–Colell, A simple adaptive procedure leading to correlated equilibria, Econometrica, 68 (2000), 1127–1150. doi: 10.1111/1468–0262.00153.  Google Scholar

[38]

S. Hart and A. Mas–Colell, A general class of adaptive strategies, Journal of Economic Theory, 98 (2001), 26–54. doi: 10.1006/jeth.2000.2746.  Google Scholar

[39]

S. Hart and A. Mas–Colell, Regret–based continuous time dynamics, Games and Economic Behavior, 45 (2003), 375–394. doi: 10.1016/S0899–8256(03)00178–7.  Google Scholar

[40]

S. Hart and A. Mas–Colell, Uncoupled dynamics do not lead to Nash equilibria, American Economic Review, 93 (2003), 1830–1836. Google Scholar

[41]

S. Hart and A. Mas Colell, Simple Adaptive Strategies: From Regret–Matching to Uncoupled Dynamics, World Scientific Publishing, 2013. doi: 10.1142/8408.  Google Scholar

[42]

E. Hazan, The convex optimization approach to regret minimization, Optimization for machine learning, S. Sra, S. Nowozin, S. Wright eds, MIT Press, (2011), 287–303. Google Scholar

[43]

E. Hazan, Optimization for Machine Learning, https://arxiv.org/pdf/1909.03550.pdf, 2019. Google Scholar

[44]

J. Hofbauer, From Nash and Brown to Maynard Smith: Equilibria, dynamics and ESS, Selection, 1(2000), 81–88. Google Scholar

[45]

J. Hofbauer, Deterministic evolutionary game dynamics, in Evolutionary Game Dynamics, K. Sigmund ed., Proceedings of Symposia in Applied Mathematics, A.M.S., 69 (2011), 61–79. doi: 10.1090/psapm/069/2882634.  Google Scholar

[46]

J. Hofbauer and W. H. Sandholm, On the global convergence of stochastic fictitious play, Econometrica, 70 (2002), 2265–2294.  Google Scholar

[47]

J. Hofbauer and W. H. Sandholm, Stable games and their dynamics, Journal of Economic Theory, 144 (2009), 1665–1693, 1693.e4. doi: 10.1016/j.jet.2009.01.007.  Google Scholar

[48]

J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge U.P., 1998. doi: 10.1017/CBO9781139173179.  Google Scholar

[49]

J. Hofbauer and K. Sigmund, Evolutionary game dynamics, Bulletin of the A.M.S., 40 (2003), 479–519. doi: 10.1090/S0273–0979–03–00988–1.  Google Scholar

[50]

J. Hofbauer and S. Sorin, Best response dynamics for continuous zero–sum games, Discrete and Continuous Dynamical Systems–series B, 6 (2006), 215–224. doi: 10.3934/dcdsb.2006.6.215.  Google Scholar

[51]

J. Hofbauer, S. Sorin and Y. Viossat, Time average replicator and best reply dynamics, Mathematics of Operations Research, 34 (2009), 263–269. doi: 10.1287/moor.1080.0359.  Google Scholar

[52]

A. Kalai and S. Vempala, Efficient algorithms for online decision problems, Journal of Computer and System Sciences, 71 (2005), 291-307.  doi: 10.1016/j.jcss.2004.10.016.  Google Scholar

[53]

J. Kwon and P. Mertikopoulos, A continuous time approach to on–line optimization, Journal of Dynamics and Games, 4 (2017), 125-148.  doi: 10.3934/jdg.2017008.  Google Scholar

[54]

N. Littlestone and M. K. Warmuth, The weighted majority algorithm, Information and Computation, 108 (1994), 212–261. doi: 10.1006/inco.1994.1009.  Google Scholar

[55]

J. Maynard Smith, Evolution and the Theory of Games, Cambridge U.P., 1982. Google Scholar

[56]

P. Mertikopoulos and W. H. Sandholm, Learning in games via reinforcement and regularization, Mathematics of Operations Research, 41 (2016), 1297-1324.  doi: 10.1287/moor.2016.0778.  Google Scholar

[57]

P. Mertikopoulos and W. H. Sandholm, Riemannian game dynamics, Journal of Economic Theory, 177 (2018), 315-364.  doi: 10.1016/j.jet.2018.06.002.  Google Scholar

[58]

P. Mertikopoulos and Z. Zhou, Learning in games with continuous action sets and unknown payoff functions, Mathematical Programming, 173 (2019), 465-507.  doi: 10.1007/s10107–018–1254–8.  Google Scholar

[59]

D. Monderer and L. S. Shapley, Potential games, Games Econom. Behav., 14 (1996), 124-143.  doi: 10.1006/game.1996.0044.  Google Scholar

[60]

Y. Nesterov, Primal–dual subgradient methods for convex problems, Mathematical Programming, 120 (2009), 221-259.  doi: 10.1007/s10107–007–0149–x.  Google Scholar

[61]

V. Perchet, Approachability, regret and calibration: Implications and equivalences, Journal of Dynamics and Games, 1 (2014), 181-254.  doi: 10.3934/jdg.2014.1.181.  Google Scholar

[62]

V. Perchet, Exponential weight approachability, applications to calibration and regret minimization, Dynamic Games and Applications, 5 (2015), 136-153.  doi: 10.1007/s13235–014–0119–x.  Google Scholar

[63]

J. Robinson, An iterative method of solving a game, Annals of Mathematics, 54 (1951), 296–301. doi: 10.2307/1969530.  Google Scholar

[64] R. T. Rockafellar, Convex Analysis, Princeton University Press, 1970.   Google Scholar
[65]

R. T. Rockafellar, Monotone operators associated with saddle–functions and minmax problems, Nonlinear Functional Analysis, F. Browder, ed., Proceedings of Symposia in Pure Math, AMS, 18 (1970), 241–250.  Google Scholar

[66]

A. Rustichini, Optimal properties of stimulus–response learning models, Games and Economic Behavior, 29 (1999), 244-273.  doi: 10.1006/game.1999.0712.  Google Scholar

[67]

W. H. Sandholm, Potential games with continuous player sets, Journal of Economic Theory, 97 (2001), 81-108.  doi: 10.1006/jeth.2000.2696.  Google Scholar

[68]

W. H. Sandholm, Large population potential games, Journal of Economic Theory, 144 (2009), 1710-1725.  doi: 10.1016/j.jet.2009.02.004.  Google Scholar

[69] W. H. Sandholm, Population Games and Evolutionary Dynamics, MIT Press, 2010.   Google Scholar
[70] W. H. Sandholm, Population Games and Deterministic Evolutionary Dynamics,, Economic Learning and Social Evolution. MIT Press, Cambridge, MA, 2010.   Google Scholar
[71]

S. Shahshahani, A new mathematical framework for the study of linkage and selection, Memoirs of the American Mathematical Society, 17 (1979), ix+34 pp. doi: 10.1090/memo/0211.  Google Scholar

[72]

S. Shalev–Shwartz, Online Learning and Online Convex Optimization, Foundations and Trends in Machine Learning, 4 (2012), 107-194.   Google Scholar

[73]

M. J. Smith, The existence, uniqueness and stability of traffic equilibria, Transportation Res., Part B, 13 (1979), 295-304.  doi: 10.1016/0191–2615(79)90022–5.  Google Scholar

[74]

M. J. Smith, The stability of a dynamic model of traffic assignment – an application of a method of Lyapunov, Transportation Sci., 18 (1984), 245-252.  doi: 10.1287/trsc.18.3.245.  Google Scholar

[75]

S. Sorin, Exponential weight algorithm in continuous time, Mathematical Programming, Ser. B, 116 (2009), 513–528. doi: 10.1007/s10107–007–0111–y.  Google Scholar

[76]

S. Sorin, On some global and unilateral adaptive dynamics, Evolutionary Game Dynamics, K. Sigmund (ed.), Proceedings of Symposia in Applied Mathematics, 69 (2011), 81–109. doi: 10.1090/psapm/069/2882635.  Google Scholar

[77]

S. Sorin and C. Wang, Finite composite games: Equilibria and dynamics, Journal of Dynamics and Games, 3 (2016), 101-120.  doi: 10.3934/jdg.2016005.  Google Scholar

[78]

G. Stoltz and G. Lugosi, Internal regret in on–line portfolio selection, Machine Learning, 59 (2005), 125-159.   Google Scholar

[79]

J. M. Swinkels, Adjustment dynamics and rational play in games, Games and Economic Behavior, 5 (1983), 455-484.  doi: 10.1006/game.1993.1025.  Google Scholar

[80]

P. Taylor and L. Jonker, Evolutionary stable strategies and game dynamics, Mathematical Biosciences, 40 (1978), 145–156. doi: 10.1016/0025–5564(78)90077–9.  Google Scholar

[81]

Y. Viossat, The replicator dynamics does not lead to correlated equilibria, Games and Economic Behavior, 59 (2007), 397–407. doi: 10.1016/j.geb.2006.09.001.  Google Scholar

[82]

Y. Viossat, Evolutionary dynamics may eliminate all strategies used in correlated equilibrium, Mathematical Social Sciences, 56 (2008), 27–43. doi: 10.1016/j.mathsocsci.2007.12.001.  Google Scholar

[83]

Y. Viossat and A. Zapechelnyuk, No–regret dynamics and fictitious play, Journal of Economic Theory, 148 (2013), 825-842.  doi: 10.1016/j.jet.2012.07.003.  Google Scholar

[84]

V. Vovk, Aggregating strategies, Proceedings of the 3rd Annual Conference on Computational Learning Theory, (1990), 371–383. Google Scholar

[85]

G. Wardrop, Some theoretical aspects of road traffic research, Proc. Inst. Civ. Eng., 1 (1952), 325–362. Google Scholar

Table1 
0 1 -1
-1 0 1
1 -1 0
0 1 -1
-1 0 1
1 -1 0
Table2 
0 0
0 0
0 0
0 0
0 0
0 0
[1]

Josef Hofbauer, Sylvain Sorin. Best response dynamics for continuous zero--sum games. Discrete & Continuous Dynamical Systems - B, 2006, 6 (1) : 215-224. doi: 10.3934/dcdsb.2006.6.215

[2]

Saul Mendoza-Palacios, Onésimo Hernández-Lerma. Stability of the replicator dynamics for games in metric spaces. Journal of Dynamics & Games, 2017, 4 (4) : 319-333. doi: 10.3934/jdg.2017017

[3]

Matt Barker. From mean field games to the best reply strategy in a stochastic framework. Journal of Dynamics & Games, 2019, 6 (4) : 291-314. doi: 10.3934/jdg.2019020

[4]

S. Mohamad, K. Gopalsamy. Neuronal dynamics in time varying enviroments: Continuous and discrete time models. Discrete & Continuous Dynamical Systems - A, 2000, 6 (4) : 841-860. doi: 10.3934/dcds.2000.6.841

[5]

Borun Shi, Robert A. Van Gorder. Nonlinear dynamics from discrete time two-player status-seeking games. Journal of Dynamics & Games, 2017, 4 (4) : 335-359. doi: 10.3934/jdg.2017018

[6]

Mathias Staudigl, Jan-Henrik Steg. On repeated games with imperfect public monitoring: From discrete to continuous time. Journal of Dynamics & Games, 2017, 4 (1) : 1-23. doi: 10.3934/jdg.2017001

[7]

André Nachbin. Discrete and continuous random water wave dynamics. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1603-1633. doi: 10.3934/dcds.2010.28.1603

[8]

Mirosław Lachowicz, Andrea Quartarone, Tatiana V. Ryabukha. Stability of solutions of kinetic equations corresponding to the replicator dynamics. Kinetic & Related Models, 2014, 7 (1) : 109-119. doi: 10.3934/krm.2014.7.109

[9]

Vassilis G. Papanicolaou, Kyriaki Vasilakopoulou. Similarity solutions of a multidimensional replicator dynamics integrodifferential equation. Journal of Dynamics & Games, 2016, 3 (1) : 51-74. doi: 10.3934/jdg.2016003

[10]

Alfonso Artigue. Discrete and continuous topological dynamics: Fields of cross sections and expansive flows. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5911-5927. doi: 10.3934/dcds.2016059

[11]

Eric Foxall. Boundary dynamics of the replicator equations for neutral models of cyclic dominance. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020153

[12]

Yuanshi Wang, Hong Wu, Shigui Ruan. Global dynamics and bifurcations in a four-dimensional replicator system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (1) : 259-271. doi: 10.3934/dcdsb.2013.18.259

[13]

Andrew Vlasic. Long-run analysis of the stochastic replicator dynamics in the presence of random jumps. Journal of Dynamics & Games, 2018, 5 (4) : 283-309. doi: 10.3934/jdg.2018018

[14]

Ciprian D. Coman. Dissipative effects in piecewise linear dynamics. Discrete & Continuous Dynamical Systems - B, 2003, 3 (2) : 163-177. doi: 10.3934/dcdsb.2003.3.163

[15]

Sylvain Sorin, Cheng Wan. Finite composite games: Equilibria and dynamics. Journal of Dynamics & Games, 2016, 3 (1) : 101-120. doi: 10.3934/jdg.2016005

[16]

Peter Bednarik, Josef Hofbauer. Discretized best-response dynamics for the Rock-Paper-Scissors game. Journal of Dynamics & Games, 2017, 4 (1) : 75-86. doi: 10.3934/jdg.2017005

[17]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[18]

Masaki Sekiguchi, Emiko Ishiwata, Yukihiko Nakata. Dynamics of an ultra-discrete SIR epidemic model with time delay. Mathematical Biosciences & Engineering, 2018, 15 (3) : 653-666. doi: 10.3934/mbe.2018029

[19]

Alexander J. Zaslavski. The turnpike property of discrete-time control problems arising in economic dynamics. Discrete & Continuous Dynamical Systems - B, 2005, 5 (3) : 861-880. doi: 10.3934/dcdsb.2005.5.861

[20]

Ming Chen, Hao Wang. Dynamics of a discrete-time stoichiometric optimal foraging model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020264

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]