doi: 10.3934/jdg.2020029

New solutions of hyperbolic telegraph equation

1. 

Department of Mathematics, Firat University, Elazig, Turkey

2. 

Department of Mathematics, University of Bonab, Bonab, Iran

3. 

Dept. of Mathematical Engineering, Yildiz Technical Univ., Istanbul, Turkey

4. 

Poznan University of Technology, Poznan, Poland, IAM, Metu, Ankara, Turkey

* Corresponding author: mehmetaliakinlar@gmail.com (Mehmet Ali Akinlar)

Received  April 2020 Revised  July 2020 Published  September 2020

We present a new method based on unification of fictitious time integration (FTI) and group preserving (GP) methods. The GP method is applied in numerically discretized ordinary differential equations obtained from application of FTI method to a given partial differential equation (PDE). The algorithm is applied to hyperbolic telegraph equation and utilizes the Cayley transformation and the Pade approximations in the Minkowski space. It avoids unauthentic solutions and ghost fixed points which is one of the advantages of the present method over other related numerical methods in the literature. The technique is tested on three specific examples for various parameter values appearing in the telegraph equation and discretization steps. Such solutions of the telegraph equation are obtained first time in this paper. Illustrative figures are provided. Efficiency of the method is determined by an error analysis which is achieved by comparing numerical solutions with exact solutions.

Citation: Mustafa Inc, Mohammad Partohaghighi, Mehmet Ali Akinlar, Gerhard-Wilhelm Weber. New solutions of hyperbolic telegraph equation. Journal of Dynamics & Games, doi: 10.3934/jdg.2020029
References:
[1]

S. Abbasbandy and M. Hashemi, Group preserving scheme for the Cauchy problem of the Laplace equation, Engineering Analysis with Boundary Elements, 35 (2011), 1003-1009.  doi: 10.1016/j.enganabound.2011.03.010.  Google Scholar

[2]

A. Al-Fayadh and H. Khawwan, Variational iteration transform method for solving Burger and coupled Burger's equations, ARPN J. Eng. Appl. Sci., 12 (2017), 6926-6932.   Google Scholar

[3]

A. Al-Fayadh and N. Hazim, Implementation of wavelet based transform for numerical solutions of partial differential equations, IOSR J. Math., 13 (2017), 30-34.   Google Scholar

[4]

I. BaltasA. Xepapadeas and A. N. Yannacopoulos, Robust portfolio decisions for financial institutions, Journal of Dynamics & Games, 5 (2018), 61-94.  doi: 10.3934/jdg.2018006.  Google Scholar

[5]

M. Dehghan and A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numer. Methods Partial Differ. Equ., 24 (2008), 1080-1093.  doi: 10.1002/num.20306.  Google Scholar

[6]

M. S. Hashemi, D. Baleanu, M. Partohaghighi and E. Darvishi, Solving the time fractional diffusion equation using Lie group integrator, Thermal Science, 19 (2015), S77–S83. doi: 10.2298/TSCI15S1S77H.  Google Scholar

[7]

M. S. HashemiD. Baleanu and M. Partohaghighi, A lie group approach to solve the fractional Poisson equation, Rom. J. Phys., 60 (2015), 1289-1297.   Google Scholar

[8]

M. S. Hashemi, M. Inc, E. Karatas and E. Darvishi, Numerical treatment on one-dimensional hyperbolic telegraph equation by the method of line-group preserving scheme, Phys. J. Plus, 134 (2019), Article number: 153. doi: 10.1140/epjp/i2019-12500-y.  Google Scholar

[9]

T. HoheiselM. Laborde and A. Oberman, A regularization interpretation of the proximal point method for weakly convex functions, Journal of Dynamics & Games, 7 (2020), 79-96.  doi: 10.3934/jdg.2020005.  Google Scholar

[10]

M. IncA. I. AliyuA. Yusufa and D. Baleanu, Combined optical solitary waves and conservation laws for nonlinear Chen–Lee–Liu equation in optical fibers, Optik, 158 (2018), 297-304.   Google Scholar

[11]

C.-S. Liu, Solving an inverse Sturm-Liouville problem by a Lie-group method, Boundary Value Problems, 2008 (2008), Art. ID 749865, 18 pp. doi: 10.1155/2008/749865.  Google Scholar

[12]

C.-S. Liu, The Fictitious time integration method to solve the space and time-fractional Burgers equations, CMC, 15 (2010), 221-240.   Google Scholar

[13]

C.-S. Liu, A group preserving scheme for Burgers equation with very large Reynolds number, CMES: Computer Modeling in Engineering & Sciences, 12 (2006), 197-211.   Google Scholar

[14]

C.-S. Liu, An efficient backward group preserving scheme for the backward in time Burgers equation, CMES: Computer Modeling in Engineering & Sciences, 12 (2006), 55-65.   Google Scholar

[15]

A. MeiappaneV. P. Venkataesan and M. J. Prabavadhi, On analytical methods for solving Poisson equation, Sch. J. Res. Math. Comput. Sci., 1 (2016), 37-43.   Google Scholar

[16]

S. T. Mohyud-DinM. A. Noor and K. I. Noor, Modified variational iteration method for solving Sine-Gordon equations, World Appl. Sci. J., 6 (2009), 999-1004.   Google Scholar

[17]

M. Partohaghighi, M. Inc, D. Baleanu and S. P. Dmoshokoa, Fictitious time integration method for solving the time fractional gas dynamic equation, Thermal Science, (2019), 1–11. Google Scholar

[18]

A. Saadatmandi and M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev Tau method, Numer. Methods Partial Differ. Equ., 26 (2010), 239-252.  doi: 10.1002/num.20442.  Google Scholar

[19]

X. Wang and S. Atluri, A unification of the concepts of the variational iteration, Adomian decomposition and Picard iteration methods and a local variational iteration method, Tech Science Press, 111 (2016), 567–585. Google Scholar

[20]

V. H. Weston and S. He, Wave splitting of the telegraph equation in R3 and its application to inverse scattering, Inverse Problems, 9 (1993), 789-812.  doi: 10.1088/0266-5611/9/6/013.  Google Scholar

show all references

References:
[1]

S. Abbasbandy and M. Hashemi, Group preserving scheme for the Cauchy problem of the Laplace equation, Engineering Analysis with Boundary Elements, 35 (2011), 1003-1009.  doi: 10.1016/j.enganabound.2011.03.010.  Google Scholar

[2]

A. Al-Fayadh and H. Khawwan, Variational iteration transform method for solving Burger and coupled Burger's equations, ARPN J. Eng. Appl. Sci., 12 (2017), 6926-6932.   Google Scholar

[3]

A. Al-Fayadh and N. Hazim, Implementation of wavelet based transform for numerical solutions of partial differential equations, IOSR J. Math., 13 (2017), 30-34.   Google Scholar

[4]

I. BaltasA. Xepapadeas and A. N. Yannacopoulos, Robust portfolio decisions for financial institutions, Journal of Dynamics & Games, 5 (2018), 61-94.  doi: 10.3934/jdg.2018006.  Google Scholar

[5]

M. Dehghan and A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numer. Methods Partial Differ. Equ., 24 (2008), 1080-1093.  doi: 10.1002/num.20306.  Google Scholar

[6]

M. S. Hashemi, D. Baleanu, M. Partohaghighi and E. Darvishi, Solving the time fractional diffusion equation using Lie group integrator, Thermal Science, 19 (2015), S77–S83. doi: 10.2298/TSCI15S1S77H.  Google Scholar

[7]

M. S. HashemiD. Baleanu and M. Partohaghighi, A lie group approach to solve the fractional Poisson equation, Rom. J. Phys., 60 (2015), 1289-1297.   Google Scholar

[8]

M. S. Hashemi, M. Inc, E. Karatas and E. Darvishi, Numerical treatment on one-dimensional hyperbolic telegraph equation by the method of line-group preserving scheme, Phys. J. Plus, 134 (2019), Article number: 153. doi: 10.1140/epjp/i2019-12500-y.  Google Scholar

[9]

T. HoheiselM. Laborde and A. Oberman, A regularization interpretation of the proximal point method for weakly convex functions, Journal of Dynamics & Games, 7 (2020), 79-96.  doi: 10.3934/jdg.2020005.  Google Scholar

[10]

M. IncA. I. AliyuA. Yusufa and D. Baleanu, Combined optical solitary waves and conservation laws for nonlinear Chen–Lee–Liu equation in optical fibers, Optik, 158 (2018), 297-304.   Google Scholar

[11]

C.-S. Liu, Solving an inverse Sturm-Liouville problem by a Lie-group method, Boundary Value Problems, 2008 (2008), Art. ID 749865, 18 pp. doi: 10.1155/2008/749865.  Google Scholar

[12]

C.-S. Liu, The Fictitious time integration method to solve the space and time-fractional Burgers equations, CMC, 15 (2010), 221-240.   Google Scholar

[13]

C.-S. Liu, A group preserving scheme for Burgers equation with very large Reynolds number, CMES: Computer Modeling in Engineering & Sciences, 12 (2006), 197-211.   Google Scholar

[14]

C.-S. Liu, An efficient backward group preserving scheme for the backward in time Burgers equation, CMES: Computer Modeling in Engineering & Sciences, 12 (2006), 55-65.   Google Scholar

[15]

A. MeiappaneV. P. Venkataesan and M. J. Prabavadhi, On analytical methods for solving Poisson equation, Sch. J. Res. Math. Comput. Sci., 1 (2016), 37-43.   Google Scholar

[16]

S. T. Mohyud-DinM. A. Noor and K. I. Noor, Modified variational iteration method for solving Sine-Gordon equations, World Appl. Sci. J., 6 (2009), 999-1004.   Google Scholar

[17]

M. Partohaghighi, M. Inc, D. Baleanu and S. P. Dmoshokoa, Fictitious time integration method for solving the time fractional gas dynamic equation, Thermal Science, (2019), 1–11. Google Scholar

[18]

A. Saadatmandi and M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev Tau method, Numer. Methods Partial Differ. Equ., 26 (2010), 239-252.  doi: 10.1002/num.20442.  Google Scholar

[19]

X. Wang and S. Atluri, A unification of the concepts of the variational iteration, Adomian decomposition and Picard iteration methods and a local variational iteration method, Tech Science Press, 111 (2016), 567–585. Google Scholar

[20]

V. H. Weston and S. He, Wave splitting of the telegraph equation in R3 and its application to inverse scattering, Inverse Problems, 9 (1993), 789-812.  doi: 10.1088/0266-5611/9/6/013.  Google Scholar

Figure 1.  Exact and numerical solutions and error for $ T = 0.05,\,\, m = n = 25,\,\, \zeta = 60000\,\,\kappa = 0.1 $ and $ u_i^j(0) = 0.1 $ and $ \Delta \xi = 3/10000000000 $ for Ex.1.
Figure 2.  Exact and numerical solutions and error for $ T = 0.05,\, m = m = 30,\, \zeta = 8000,\,\kappa = 0.1 $ and $ u_i^j(0) = 0.001 $ and $ \Delta \xi = 3/10000000000 $ for Ex.2.
Figure 3.  Exact and numerical solutions and error for $ T = 0.05,\, m = n = 40,\, \zeta = 7995,\,\kappa = 0.1 $ and $ u_i^j(0) = 0.001 $ and $ \Delta\xi = 3/10000000000 $ for Ex.2.
Figure 4.  Exact solution, numerical solution and error for $ T = 0.05,\, m = n = 25,\, \zeta = 5995,\,\kappa = 0.01 $ and $ u_i^j(0) = 0.01 $ and $ \Delta \xi = 3/10000000000 $ for Ex. 3.
Table 1.  Solution and error values for $ m=n=25 $ and $ u_i^j(0)=0.1 $ for Ex.1
(x, t) Numerical Exact Error
(-2, 0) 0.1353 0.1353 8.0756e-14
(-1, 0.01) 0.3641 0.3641 2.5085e-13
(0, 0.02) 0.9773 0.9773 9.6537e-13
(1, 0.03) 2.6346 2.6346 7.8534e-12
(2, 0.04) 7.0875 7.0875 2.2148e-10
(x, t) Numerical Exact Error
(-2, 0) 0.1353 0.1353 8.0756e-14
(-1, 0.01) 0.3641 0.3641 2.5085e-13
(0, 0.02) 0.9773 0.9773 9.6537e-13
(1, 0.03) 2.6346 2.6346 7.8534e-12
(2, 0.04) 7.0875 7.0875 2.2148e-10
Table 2.  Numerical and exact solutions and error values for $ m=n=30 $, and $ u_i^j(0)=0 .001 $ for Ex.2
(x, t) Numerical Exact Error
(0, 0) 0 0 0
(2, 0.01) 0.9289 0.9289 1.9657e-13
(4.02) -0.6876 -0.6876 9.7778e-14
(6, 0.03) -0.4197 -0.4197 3.7708e-14
(8, 0.04) 0.9628 0.9628 2.2468e-13
(10, 0.05) 3.6693e-16 3.6693e-16 2.9738e-44
(x, t) Numerical Exact Error
(0, 0) 0 0 0
(2, 0.01) 0.9289 0.9289 1.9657e-13
(4.02) -0.6876 -0.6876 9.7778e-14
(6, 0.03) -0.4197 -0.4197 3.7708e-14
(8, 0.04) 0.9628 0.9628 2.2468e-13
(10, 0.05) 3.6693e-16 3.6693e-16 2.9738e-44
Table 3.  Solutions with error values for $ m=n=40 $ and $ u_i^j(0)=0.001 $ for Ex. 2
(x, t) Numerical Exact Error
(-10, 0) -3.6739e-16 -3.6739e-16 2.9813e-44
(-5, 0.01) 0.9350 0.9350 4.9081e-12
(0.02) -0.9924 -0.9924 1.3054e-11
(5, 0.03) -0.9346 -0.9346 9.7228e-12
(10, 0.04) 3.6708e-16 3.6708e-16 2.9763e-44
(x, t) Numerical Exact Error
(-10, 0) -3.6739e-16 -3.6739e-16 2.9813e-44
(-5, 0.01) 0.9350 0.9350 4.9081e-12
(0.02) -0.9924 -0.9924 1.3054e-11
(5, 0.03) -0.9346 -0.9346 9.7228e-12
(10, 0.04) 3.6708e-16 3.6708e-16 2.9763e-44
Table 4.  Solutions with error values for $ m=n=25 $, $ u_i^j(0)=0.001 $ for Ex.3
(x, t) Numerical Exact Error
(-2, 0) -0.9093 -0.9093 2.6858e-13
(-1, 0.01) -0.8328 -0.8328 6.0082e-12
(0, 0.02) 0 0 3.1758e-18
(1, 0.03) 0.8173 0.8173 1.3564e-11
(2, 0.04) 0.8740 0.8740 2.4814e-13
(x, t) Numerical Exact Error
(-2, 0) -0.9093 -0.9093 2.6858e-13
(-1, 0.01) -0.8328 -0.8328 6.0082e-12
(0, 0.02) 0 0 3.1758e-18
(1, 0.03) 0.8173 0.8173 1.3564e-11
(2, 0.04) 0.8740 0.8740 2.4814e-13
[1]

Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2021008

[2]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[3]

Guoliang Zhang, Shaoqin Zheng, Tao Xiong. A conservative semi-Lagrangian finite difference WENO scheme based on exponential integrator for one-dimensional scalar nonlinear hyperbolic equations. Electronic Research Archive, 2021, 29 (1) : 1819-1839. doi: 10.3934/era.2020093

[4]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[5]

Michiel Bertsch, Danielle Hilhorst, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. A nonlinear parabolic-hyperbolic system for contact inhibition and a degenerate parabolic fisher kpp equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3117-3142. doi: 10.3934/dcds.2019226

[6]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021001

[7]

Dong-Ho Tsai, Chia-Hsing Nien. On space-time periodic solutions of the one-dimensional heat equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3997-4017. doi: 10.3934/dcds.2020037

[8]

Taige Wang, Bing-Yu Zhang. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 1205-1221. doi: 10.3934/dcdsb.2020160

[9]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[10]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

[11]

Maika Goto, Kazunori Kuwana, Yasuhide Uegata, Shigetoshi Yazaki. A method how to determine parameters arising in a smoldering evolution equation by image segmentation for experiment's movies. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 881-891. doi: 10.3934/dcdss.2020233

[12]

Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021008

[13]

Editorial Office. Retraction: Xiao-Qian Jiang and Lun-Chuan Zhang, Stock price fluctuation prediction method based on time series analysis. Discrete & Continuous Dynamical Systems - S, 2019, 12 (4&5) : 915-915. doi: 10.3934/dcdss.2019061

[14]

Yi Zhou, Jianli Liu. The initial-boundary value problem on a strip for the equation of time-like extremal surfaces. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 381-397. doi: 10.3934/dcds.2009.23.381

[15]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[16]

Matania Ben–Artzi, Joseph Falcovitz, Jiequan Li. The convergence of the GRP scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 1-27. doi: 10.3934/dcds.2009.23.1

[17]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[18]

Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49

[19]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020407

[20]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

 Impact Factor: 

Metrics

  • PDF downloads (79)
  • HTML views (184)
  • Cited by (0)

[Back to Top]