[1]
|
S. Abbasbandy and M. Hashemi, Group preserving scheme for the Cauchy problem of the Laplace equation, Engineering Analysis with Boundary Elements, 35 (2011), 1003-1009.
doi: 10.1016/j.enganabound.2011.03.010.
|
[2]
|
A. Al-Fayadh and H. Khawwan, Variational iteration transform method for solving Burger and coupled Burger's equations, ARPN J. Eng. Appl. Sci., 12 (2017), 6926-6932.
|
[3]
|
A. Al-Fayadh and N. Hazim, Implementation of wavelet based transform for numerical solutions of partial differential equations, IOSR J. Math., 13 (2017), 30-34.
|
[4]
|
I. Baltas, A. Xepapadeas and A. N. Yannacopoulos, Robust portfolio decisions for financial institutions, Journal of Dynamics & Games, 5 (2018), 61-94.
doi: 10.3934/jdg.2018006.
|
[5]
|
M. Dehghan and A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numer. Methods Partial Differ. Equ., 24 (2008), 1080-1093.
doi: 10.1002/num.20306.
|
[6]
|
M. S. Hashemi, D. Baleanu, M. Partohaghighi and E. Darvishi, Solving the time fractional diffusion equation using Lie group integrator, Thermal Science, 19 (2015), S77–S83.
doi: 10.2298/TSCI15S1S77H.
|
[7]
|
M. S. Hashemi, D. Baleanu and M. Partohaghighi, A lie group approach to solve the fractional Poisson equation, Rom. J. Phys., 60 (2015), 1289-1297.
|
[8]
|
M. S. Hashemi, M. Inc, E. Karatas and E. Darvishi, Numerical treatment on one-dimensional hyperbolic telegraph equation by the method of line-group preserving scheme, Phys. J. Plus, 134 (2019), Article number: 153.
doi: 10.1140/epjp/i2019-12500-y.
|
[9]
|
T. Hoheisel, M. Laborde and A. Oberman, A regularization interpretation of the proximal point method for weakly convex functions, Journal of Dynamics & Games, 7 (2020), 79-96.
doi: 10.3934/jdg.2020005.
|
[10]
|
M. Inc, A. I. Aliyu, A. Yusufa and D. Baleanu, Combined optical solitary waves and conservation laws for nonlinear Chen–Lee–Liu equation in optical fibers, Optik, 158 (2018), 297-304.
|
[11]
|
C.-S. Liu, Solving an inverse Sturm-Liouville problem by a Lie-group method, Boundary Value Problems, 2008 (2008), Art. ID 749865, 18 pp.
doi: 10.1155/2008/749865.
|
[12]
|
C.-S. Liu, The Fictitious time integration method to solve the space and time-fractional Burgers equations, CMC, 15 (2010), 221-240.
|
[13]
|
C.-S. Liu, A group preserving scheme for Burgers equation with very large Reynolds number, CMES: Computer Modeling in Engineering & Sciences, 12 (2006), 197-211.
|
[14]
|
C.-S. Liu, An efficient backward group preserving scheme for the backward in time Burgers equation, CMES: Computer Modeling in Engineering & Sciences, 12 (2006), 55-65.
|
[15]
|
A. Meiappane, V. P. Venkataesan and M. J. Prabavadhi, On analytical methods for solving Poisson equation, Sch. J. Res. Math. Comput. Sci., 1 (2016), 37-43.
|
[16]
|
S. T. Mohyud-Din, M. A. Noor and K. I. Noor, Modified variational iteration method for solving Sine-Gordon equations, World Appl. Sci. J., 6 (2009), 999-1004.
|
[17]
|
M. Partohaghighi, M. Inc, D. Baleanu and S. P. Dmoshokoa, Fictitious time integration method for solving the time fractional gas dynamic equation, Thermal Science, (2019), 1–11.
|
[18]
|
A. Saadatmandi and M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev Tau method, Numer. Methods Partial Differ. Equ., 26 (2010), 239-252.
doi: 10.1002/num.20442.
|
[19]
|
X. Wang and S. Atluri, A unification of the concepts of the variational iteration, Adomian decomposition and Picard iteration methods and a local variational iteration method, Tech Science Press, 111 (2016), 567–585.
|
[20]
|
V. H. Weston and S. He, Wave splitting of the telegraph equation in R3 and its application to inverse scattering, Inverse Problems, 9 (1993), 789-812.
doi: 10.1088/0266-5611/9/6/013.
|