doi: 10.3934/jdg.2020029

New solutions of hyperbolic telegraph equation

1. 

Department of Mathematics, Firat University, Elazig, Turkey

2. 

Department of Mathematics, University of Bonab, Bonab, Iran

3. 

Dept. of Mathematical Engineering, Yildiz Technical Univ., Istanbul, Turkey

4. 

Poznan University of Technology, Poznan, Poland, IAM, Metu, Ankara, Turkey

* Corresponding author: mehmetaliakinlar@gmail.com (Mehmet Ali Akinlar)

Received  April 2020 Revised  July 2020 Published  September 2020

We present a new method based on unification of fictitious time integration (FTI) and group preserving (GP) methods. The GP method is applied in numerically discretized ordinary differential equations obtained from application of FTI method to a given partial differential equation (PDE). The algorithm is applied to hyperbolic telegraph equation and utilizes the Cayley transformation and the Pade approximations in the Minkowski space. It avoids unauthentic solutions and ghost fixed points which is one of the advantages of the present method over other related numerical methods in the literature. The technique is tested on three specific examples for various parameter values appearing in the telegraph equation and discretization steps. Such solutions of the telegraph equation are obtained first time in this paper. Illustrative figures are provided. Efficiency of the method is determined by an error analysis which is achieved by comparing numerical solutions with exact solutions.

Citation: Mustafa Inc, Mohammad Partohaghighi, Mehmet Ali Akinlar, Gerhard-Wilhelm Weber. New solutions of hyperbolic telegraph equation. Journal of Dynamics & Games, doi: 10.3934/jdg.2020029
References:
[1]

S. Abbasbandy and M. Hashemi, Group preserving scheme for the Cauchy problem of the Laplace equation, Engineering Analysis with Boundary Elements, 35 (2011), 1003-1009.  doi: 10.1016/j.enganabound.2011.03.010.  Google Scholar

[2]

A. Al-Fayadh and H. Khawwan, Variational iteration transform method for solving Burger and coupled Burger's equations, ARPN J. Eng. Appl. Sci., 12 (2017), 6926-6932.   Google Scholar

[3]

A. Al-Fayadh and N. Hazim, Implementation of wavelet based transform for numerical solutions of partial differential equations, IOSR J. Math., 13 (2017), 30-34.   Google Scholar

[4]

I. BaltasA. Xepapadeas and A. N. Yannacopoulos, Robust portfolio decisions for financial institutions, Journal of Dynamics & Games, 5 (2018), 61-94.  doi: 10.3934/jdg.2018006.  Google Scholar

[5]

M. Dehghan and A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numer. Methods Partial Differ. Equ., 24 (2008), 1080-1093.  doi: 10.1002/num.20306.  Google Scholar

[6]

M. S. Hashemi, D. Baleanu, M. Partohaghighi and E. Darvishi, Solving the time fractional diffusion equation using Lie group integrator, Thermal Science, 19 (2015), S77–S83. doi: 10.2298/TSCI15S1S77H.  Google Scholar

[7]

M. S. HashemiD. Baleanu and M. Partohaghighi, A lie group approach to solve the fractional Poisson equation, Rom. J. Phys., 60 (2015), 1289-1297.   Google Scholar

[8]

M. S. Hashemi, M. Inc, E. Karatas and E. Darvishi, Numerical treatment on one-dimensional hyperbolic telegraph equation by the method of line-group preserving scheme, Phys. J. Plus, 134 (2019), Article number: 153. doi: 10.1140/epjp/i2019-12500-y.  Google Scholar

[9]

T. HoheiselM. Laborde and A. Oberman, A regularization interpretation of the proximal point method for weakly convex functions, Journal of Dynamics & Games, 7 (2020), 79-96.  doi: 10.3934/jdg.2020005.  Google Scholar

[10]

M. IncA. I. AliyuA. Yusufa and D. Baleanu, Combined optical solitary waves and conservation laws for nonlinear Chen–Lee–Liu equation in optical fibers, Optik, 158 (2018), 297-304.   Google Scholar

[11]

C.-S. Liu, Solving an inverse Sturm-Liouville problem by a Lie-group method, Boundary Value Problems, 2008 (2008), Art. ID 749865, 18 pp. doi: 10.1155/2008/749865.  Google Scholar

[12]

C.-S. Liu, The Fictitious time integration method to solve the space and time-fractional Burgers equations, CMC, 15 (2010), 221-240.   Google Scholar

[13]

C.-S. Liu, A group preserving scheme for Burgers equation with very large Reynolds number, CMES: Computer Modeling in Engineering & Sciences, 12 (2006), 197-211.   Google Scholar

[14]

C.-S. Liu, An efficient backward group preserving scheme for the backward in time Burgers equation, CMES: Computer Modeling in Engineering & Sciences, 12 (2006), 55-65.   Google Scholar

[15]

A. MeiappaneV. P. Venkataesan and M. J. Prabavadhi, On analytical methods for solving Poisson equation, Sch. J. Res. Math. Comput. Sci., 1 (2016), 37-43.   Google Scholar

[16]

S. T. Mohyud-DinM. A. Noor and K. I. Noor, Modified variational iteration method for solving Sine-Gordon equations, World Appl. Sci. J., 6 (2009), 999-1004.   Google Scholar

[17]

M. Partohaghighi, M. Inc, D. Baleanu and S. P. Dmoshokoa, Fictitious time integration method for solving the time fractional gas dynamic equation, Thermal Science, (2019), 1–11. Google Scholar

[18]

A. Saadatmandi and M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev Tau method, Numer. Methods Partial Differ. Equ., 26 (2010), 239-252.  doi: 10.1002/num.20442.  Google Scholar

[19]

X. Wang and S. Atluri, A unification of the concepts of the variational iteration, Adomian decomposition and Picard iteration methods and a local variational iteration method, Tech Science Press, 111 (2016), 567–585. Google Scholar

[20]

V. H. Weston and S. He, Wave splitting of the telegraph equation in R3 and its application to inverse scattering, Inverse Problems, 9 (1993), 789-812.  doi: 10.1088/0266-5611/9/6/013.  Google Scholar

show all references

References:
[1]

S. Abbasbandy and M. Hashemi, Group preserving scheme for the Cauchy problem of the Laplace equation, Engineering Analysis with Boundary Elements, 35 (2011), 1003-1009.  doi: 10.1016/j.enganabound.2011.03.010.  Google Scholar

[2]

A. Al-Fayadh and H. Khawwan, Variational iteration transform method for solving Burger and coupled Burger's equations, ARPN J. Eng. Appl. Sci., 12 (2017), 6926-6932.   Google Scholar

[3]

A. Al-Fayadh and N. Hazim, Implementation of wavelet based transform for numerical solutions of partial differential equations, IOSR J. Math., 13 (2017), 30-34.   Google Scholar

[4]

I. BaltasA. Xepapadeas and A. N. Yannacopoulos, Robust portfolio decisions for financial institutions, Journal of Dynamics & Games, 5 (2018), 61-94.  doi: 10.3934/jdg.2018006.  Google Scholar

[5]

M. Dehghan and A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numer. Methods Partial Differ. Equ., 24 (2008), 1080-1093.  doi: 10.1002/num.20306.  Google Scholar

[6]

M. S. Hashemi, D. Baleanu, M. Partohaghighi and E. Darvishi, Solving the time fractional diffusion equation using Lie group integrator, Thermal Science, 19 (2015), S77–S83. doi: 10.2298/TSCI15S1S77H.  Google Scholar

[7]

M. S. HashemiD. Baleanu and M. Partohaghighi, A lie group approach to solve the fractional Poisson equation, Rom. J. Phys., 60 (2015), 1289-1297.   Google Scholar

[8]

M. S. Hashemi, M. Inc, E. Karatas and E. Darvishi, Numerical treatment on one-dimensional hyperbolic telegraph equation by the method of line-group preserving scheme, Phys. J. Plus, 134 (2019), Article number: 153. doi: 10.1140/epjp/i2019-12500-y.  Google Scholar

[9]

T. HoheiselM. Laborde and A. Oberman, A regularization interpretation of the proximal point method for weakly convex functions, Journal of Dynamics & Games, 7 (2020), 79-96.  doi: 10.3934/jdg.2020005.  Google Scholar

[10]

M. IncA. I. AliyuA. Yusufa and D. Baleanu, Combined optical solitary waves and conservation laws for nonlinear Chen–Lee–Liu equation in optical fibers, Optik, 158 (2018), 297-304.   Google Scholar

[11]

C.-S. Liu, Solving an inverse Sturm-Liouville problem by a Lie-group method, Boundary Value Problems, 2008 (2008), Art. ID 749865, 18 pp. doi: 10.1155/2008/749865.  Google Scholar

[12]

C.-S. Liu, The Fictitious time integration method to solve the space and time-fractional Burgers equations, CMC, 15 (2010), 221-240.   Google Scholar

[13]

C.-S. Liu, A group preserving scheme for Burgers equation with very large Reynolds number, CMES: Computer Modeling in Engineering & Sciences, 12 (2006), 197-211.   Google Scholar

[14]

C.-S. Liu, An efficient backward group preserving scheme for the backward in time Burgers equation, CMES: Computer Modeling in Engineering & Sciences, 12 (2006), 55-65.   Google Scholar

[15]

A. MeiappaneV. P. Venkataesan and M. J. Prabavadhi, On analytical methods for solving Poisson equation, Sch. J. Res. Math. Comput. Sci., 1 (2016), 37-43.   Google Scholar

[16]

S. T. Mohyud-DinM. A. Noor and K. I. Noor, Modified variational iteration method for solving Sine-Gordon equations, World Appl. Sci. J., 6 (2009), 999-1004.   Google Scholar

[17]

M. Partohaghighi, M. Inc, D. Baleanu and S. P. Dmoshokoa, Fictitious time integration method for solving the time fractional gas dynamic equation, Thermal Science, (2019), 1–11. Google Scholar

[18]

A. Saadatmandi and M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev Tau method, Numer. Methods Partial Differ. Equ., 26 (2010), 239-252.  doi: 10.1002/num.20442.  Google Scholar

[19]

X. Wang and S. Atluri, A unification of the concepts of the variational iteration, Adomian decomposition and Picard iteration methods and a local variational iteration method, Tech Science Press, 111 (2016), 567–585. Google Scholar

[20]

V. H. Weston and S. He, Wave splitting of the telegraph equation in R3 and its application to inverse scattering, Inverse Problems, 9 (1993), 789-812.  doi: 10.1088/0266-5611/9/6/013.  Google Scholar

Figure 1.  Exact and numerical solutions and error for $ T = 0.05,\,\, m = n = 25,\,\, \zeta = 60000\,\,\kappa = 0.1 $ and $ u_i^j(0) = 0.1 $ and $ \Delta \xi = 3/10000000000 $ for Ex.1.
Figure 2.  Exact and numerical solutions and error for $ T = 0.05,\, m = m = 30,\, \zeta = 8000,\,\kappa = 0.1 $ and $ u_i^j(0) = 0.001 $ and $ \Delta \xi = 3/10000000000 $ for Ex.2.
Figure 3.  Exact and numerical solutions and error for $ T = 0.05,\, m = n = 40,\, \zeta = 7995,\,\kappa = 0.1 $ and $ u_i^j(0) = 0.001 $ and $ \Delta\xi = 3/10000000000 $ for Ex.2.
Figure 4.  Exact solution, numerical solution and error for $ T = 0.05,\, m = n = 25,\, \zeta = 5995,\,\kappa = 0.01 $ and $ u_i^j(0) = 0.01 $ and $ \Delta \xi = 3/10000000000 $ for Ex. 3.
Table 1.  Solution and error values for $ m=n=25 $ and $ u_i^j(0)=0.1 $ for Ex.1
(x, t) Numerical Exact Error
(-2, 0) 0.1353 0.1353 8.0756e-14
(-1, 0.01) 0.3641 0.3641 2.5085e-13
(0, 0.02) 0.9773 0.9773 9.6537e-13
(1, 0.03) 2.6346 2.6346 7.8534e-12
(2, 0.04) 7.0875 7.0875 2.2148e-10
(x, t) Numerical Exact Error
(-2, 0) 0.1353 0.1353 8.0756e-14
(-1, 0.01) 0.3641 0.3641 2.5085e-13
(0, 0.02) 0.9773 0.9773 9.6537e-13
(1, 0.03) 2.6346 2.6346 7.8534e-12
(2, 0.04) 7.0875 7.0875 2.2148e-10
Table 2.  Numerical and exact solutions and error values for $ m=n=30 $, and $ u_i^j(0)=0 .001 $ for Ex.2
(x, t) Numerical Exact Error
(0, 0) 0 0 0
(2, 0.01) 0.9289 0.9289 1.9657e-13
(4.02) -0.6876 -0.6876 9.7778e-14
(6, 0.03) -0.4197 -0.4197 3.7708e-14
(8, 0.04) 0.9628 0.9628 2.2468e-13
(10, 0.05) 3.6693e-16 3.6693e-16 2.9738e-44
(x, t) Numerical Exact Error
(0, 0) 0 0 0
(2, 0.01) 0.9289 0.9289 1.9657e-13
(4.02) -0.6876 -0.6876 9.7778e-14
(6, 0.03) -0.4197 -0.4197 3.7708e-14
(8, 0.04) 0.9628 0.9628 2.2468e-13
(10, 0.05) 3.6693e-16 3.6693e-16 2.9738e-44
Table 3.  Solutions with error values for $ m=n=40 $ and $ u_i^j(0)=0.001 $ for Ex. 2
(x, t) Numerical Exact Error
(-10, 0) -3.6739e-16 -3.6739e-16 2.9813e-44
(-5, 0.01) 0.9350 0.9350 4.9081e-12
(0.02) -0.9924 -0.9924 1.3054e-11
(5, 0.03) -0.9346 -0.9346 9.7228e-12
(10, 0.04) 3.6708e-16 3.6708e-16 2.9763e-44
(x, t) Numerical Exact Error
(-10, 0) -3.6739e-16 -3.6739e-16 2.9813e-44
(-5, 0.01) 0.9350 0.9350 4.9081e-12
(0.02) -0.9924 -0.9924 1.3054e-11
(5, 0.03) -0.9346 -0.9346 9.7228e-12
(10, 0.04) 3.6708e-16 3.6708e-16 2.9763e-44
Table 4.  Solutions with error values for $ m=n=25 $, $ u_i^j(0)=0.001 $ for Ex.3
(x, t) Numerical Exact Error
(-2, 0) -0.9093 -0.9093 2.6858e-13
(-1, 0.01) -0.8328 -0.8328 6.0082e-12
(0, 0.02) 0 0 3.1758e-18
(1, 0.03) 0.8173 0.8173 1.3564e-11
(2, 0.04) 0.8740 0.8740 2.4814e-13
(x, t) Numerical Exact Error
(-2, 0) -0.9093 -0.9093 2.6858e-13
(-1, 0.01) -0.8328 -0.8328 6.0082e-12
(0, 0.02) 0 0 3.1758e-18
(1, 0.03) 0.8173 0.8173 1.3564e-11
(2, 0.04) 0.8740 0.8740 2.4814e-13
[1]

Xiaozhong Yang, Xinlong Liu. Numerical analysis of two new finite difference methods for time-fractional telegraph equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3921-3942. doi: 10.3934/dcdsb.2020269

[2]

Julian Koellermeier, Giovanni Samaey. Projective integration schemes for hyperbolic moment equations. Kinetic & Related Models, 2021, 14 (2) : 353-387. doi: 10.3934/krm.2021008

[3]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[4]

Haili Qiao, Aijie Cheng. A fast high order method for time fractional diffusion equation with non-smooth data. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021073

[5]

Petra Csomós, Hermann Mena. Fourier-splitting method for solving hyperbolic LQR problems. Numerical Algebra, Control & Optimization, 2018, 8 (1) : 17-46. doi: 10.3934/naco.2018002

[6]

Tomáš Roubíček. An energy-conserving time-discretisation scheme for poroelastic media with phase-field fracture emitting waves and heat. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 867-893. doi: 10.3934/dcdss.2017044

[7]

Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012

[8]

Mario Bukal. Well-posedness and convergence of a numerical scheme for the corrected Derrida-Lebowitz-Speer-Spohn equation using the Hellinger distance. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3389-3414. doi: 10.3934/dcds.2021001

[9]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[10]

Woocheol Choi, Youngwoo Koh. On the splitting method for the nonlinear Schrödinger equation with initial data in $ H^1 $. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3837-3867. doi: 10.3934/dcds.2021019

[11]

Dandan Cheng, Qian Hao, Zhiming Li. Scale pressure for amenable group actions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1091-1102. doi: 10.3934/cpaa.2021008

[12]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[13]

Xiaomao Deng, Xiao-Chuan Cai, Jun Zou. A parallel space-time domain decomposition method for unsteady source inversion problems. Inverse Problems & Imaging, 2015, 9 (4) : 1069-1091. doi: 10.3934/ipi.2015.9.1069

[14]

Yueqiang Shang, Qihui Zhang. A subgrid stabilizing postprocessed mixed finite element method for the time-dependent Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3119-3142. doi: 10.3934/dcdsb.2020222

[15]

Tobias Breiten, Sergey Dolgov, Martin Stoll. Solving differential Riccati equations: A nonlinear space-time method using tensor trains. Numerical Algebra, Control & Optimization, 2021, 11 (3) : 407-429. doi: 10.3934/naco.2020034

[16]

Arseny Egorov. Morse coding for a Fuchsian group of finite covolume. Journal of Modern Dynamics, 2009, 3 (4) : 637-646. doi: 10.3934/jmd.2009.3.637

[17]

Ronald E. Mickens. Positivity preserving discrete model for the coupled ODE's modeling glycolysis. Conference Publications, 2003, 2003 (Special) : 623-629. doi: 10.3934/proc.2003.2003.623

[18]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407

[19]

Masahiro Ikeda, Ziheng Tu, Kyouhei Wakasa. Small data blow-up of semi-linear wave equation with scattering dissipation and time-dependent mass. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021011

[20]

Fabio Camilli, Serikbolsyn Duisembay, Qing Tang. Approximation of an optimal control problem for the time-fractional Fokker-Planck equation. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021013

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]