doi: 10.3934/jdg.2020029

New solutions of hyperbolic telegraph equation

1. 

Department of Mathematics, Firat University, Elazig, Turkey

2. 

Department of Mathematics, University of Bonab, Bonab, Iran

3. 

Dept. of Mathematical Engineering, Yildiz Technical Univ., Istanbul, Turkey

4. 

Poznan University of Technology, Poznan, Poland, IAM, Metu, Ankara, Turkey

* Corresponding author: mehmetaliakinlar@gmail.com (Mehmet Ali Akinlar)

Received  April 2020 Revised  July 2020 Published  September 2020

We present a new method based on unification of fictitious time integration (FTI) and group preserving (GP) methods. The GP method is applied in numerically discretized ordinary differential equations obtained from application of FTI method to a given partial differential equation (PDE). The algorithm is applied to hyperbolic telegraph equation and utilizes the Cayley transformation and the Pade approximations in the Minkowski space. It avoids unauthentic solutions and ghost fixed points which is one of the advantages of the present method over other related numerical methods in the literature. The technique is tested on three specific examples for various parameter values appearing in the telegraph equation and discretization steps. Such solutions of the telegraph equation are obtained first time in this paper. Illustrative figures are provided. Efficiency of the method is determined by an error analysis which is achieved by comparing numerical solutions with exact solutions.

Citation: Mustafa Inc, Mohammad Partohaghighi, Mehmet Ali Akinlar, Gerhard-Wilhelm Weber. New solutions of hyperbolic telegraph equation. Journal of Dynamics & Games, doi: 10.3934/jdg.2020029
References:
[1]

S. Abbasbandy and M. Hashemi, Group preserving scheme for the Cauchy problem of the Laplace equation, Engineering Analysis with Boundary Elements, 35 (2011), 1003-1009.  doi: 10.1016/j.enganabound.2011.03.010.  Google Scholar

[2]

A. Al-Fayadh and H. Khawwan, Variational iteration transform method for solving Burger and coupled Burger's equations, ARPN J. Eng. Appl. Sci., 12 (2017), 6926-6932.   Google Scholar

[3]

A. Al-Fayadh and N. Hazim, Implementation of wavelet based transform for numerical solutions of partial differential equations, IOSR J. Math., 13 (2017), 30-34.   Google Scholar

[4]

I. BaltasA. Xepapadeas and A. N. Yannacopoulos, Robust portfolio decisions for financial institutions, Journal of Dynamics & Games, 5 (2018), 61-94.  doi: 10.3934/jdg.2018006.  Google Scholar

[5]

M. Dehghan and A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numer. Methods Partial Differ. Equ., 24 (2008), 1080-1093.  doi: 10.1002/num.20306.  Google Scholar

[6]

M. S. Hashemi, D. Baleanu, M. Partohaghighi and E. Darvishi, Solving the time fractional diffusion equation using Lie group integrator, Thermal Science, 19 (2015), S77–S83. doi: 10.2298/TSCI15S1S77H.  Google Scholar

[7]

M. S. HashemiD. Baleanu and M. Partohaghighi, A lie group approach to solve the fractional Poisson equation, Rom. J. Phys., 60 (2015), 1289-1297.   Google Scholar

[8]

M. S. Hashemi, M. Inc, E. Karatas and E. Darvishi, Numerical treatment on one-dimensional hyperbolic telegraph equation by the method of line-group preserving scheme, Phys. J. Plus, 134 (2019), Article number: 153. doi: 10.1140/epjp/i2019-12500-y.  Google Scholar

[9]

T. HoheiselM. Laborde and A. Oberman, A regularization interpretation of the proximal point method for weakly convex functions, Journal of Dynamics & Games, 7 (2020), 79-96.  doi: 10.3934/jdg.2020005.  Google Scholar

[10]

M. IncA. I. AliyuA. Yusufa and D. Baleanu, Combined optical solitary waves and conservation laws for nonlinear Chen–Lee–Liu equation in optical fibers, Optik, 158 (2018), 297-304.   Google Scholar

[11]

C.-S. Liu, Solving an inverse Sturm-Liouville problem by a Lie-group method, Boundary Value Problems, 2008 (2008), Art. ID 749865, 18 pp. doi: 10.1155/2008/749865.  Google Scholar

[12]

C.-S. Liu, The Fictitious time integration method to solve the space and time-fractional Burgers equations, CMC, 15 (2010), 221-240.   Google Scholar

[13]

C.-S. Liu, A group preserving scheme for Burgers equation with very large Reynolds number, CMES: Computer Modeling in Engineering & Sciences, 12 (2006), 197-211.   Google Scholar

[14]

C.-S. Liu, An efficient backward group preserving scheme for the backward in time Burgers equation, CMES: Computer Modeling in Engineering & Sciences, 12 (2006), 55-65.   Google Scholar

[15]

A. MeiappaneV. P. Venkataesan and M. J. Prabavadhi, On analytical methods for solving Poisson equation, Sch. J. Res. Math. Comput. Sci., 1 (2016), 37-43.   Google Scholar

[16]

S. T. Mohyud-DinM. A. Noor and K. I. Noor, Modified variational iteration method for solving Sine-Gordon equations, World Appl. Sci. J., 6 (2009), 999-1004.   Google Scholar

[17]

M. Partohaghighi, M. Inc, D. Baleanu and S. P. Dmoshokoa, Fictitious time integration method for solving the time fractional gas dynamic equation, Thermal Science, (2019), 1–11. Google Scholar

[18]

A. Saadatmandi and M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev Tau method, Numer. Methods Partial Differ. Equ., 26 (2010), 239-252.  doi: 10.1002/num.20442.  Google Scholar

[19]

X. Wang and S. Atluri, A unification of the concepts of the variational iteration, Adomian decomposition and Picard iteration methods and a local variational iteration method, Tech Science Press, 111 (2016), 567–585. Google Scholar

[20]

V. H. Weston and S. He, Wave splitting of the telegraph equation in R3 and its application to inverse scattering, Inverse Problems, 9 (1993), 789-812.  doi: 10.1088/0266-5611/9/6/013.  Google Scholar

show all references

References:
[1]

S. Abbasbandy and M. Hashemi, Group preserving scheme for the Cauchy problem of the Laplace equation, Engineering Analysis with Boundary Elements, 35 (2011), 1003-1009.  doi: 10.1016/j.enganabound.2011.03.010.  Google Scholar

[2]

A. Al-Fayadh and H. Khawwan, Variational iteration transform method for solving Burger and coupled Burger's equations, ARPN J. Eng. Appl. Sci., 12 (2017), 6926-6932.   Google Scholar

[3]

A. Al-Fayadh and N. Hazim, Implementation of wavelet based transform for numerical solutions of partial differential equations, IOSR J. Math., 13 (2017), 30-34.   Google Scholar

[4]

I. BaltasA. Xepapadeas and A. N. Yannacopoulos, Robust portfolio decisions for financial institutions, Journal of Dynamics & Games, 5 (2018), 61-94.  doi: 10.3934/jdg.2018006.  Google Scholar

[5]

M. Dehghan and A. Shokri, A numerical method for solving the hyperbolic telegraph equation, Numer. Methods Partial Differ. Equ., 24 (2008), 1080-1093.  doi: 10.1002/num.20306.  Google Scholar

[6]

M. S. Hashemi, D. Baleanu, M. Partohaghighi and E. Darvishi, Solving the time fractional diffusion equation using Lie group integrator, Thermal Science, 19 (2015), S77–S83. doi: 10.2298/TSCI15S1S77H.  Google Scholar

[7]

M. S. HashemiD. Baleanu and M. Partohaghighi, A lie group approach to solve the fractional Poisson equation, Rom. J. Phys., 60 (2015), 1289-1297.   Google Scholar

[8]

M. S. Hashemi, M. Inc, E. Karatas and E. Darvishi, Numerical treatment on one-dimensional hyperbolic telegraph equation by the method of line-group preserving scheme, Phys. J. Plus, 134 (2019), Article number: 153. doi: 10.1140/epjp/i2019-12500-y.  Google Scholar

[9]

T. HoheiselM. Laborde and A. Oberman, A regularization interpretation of the proximal point method for weakly convex functions, Journal of Dynamics & Games, 7 (2020), 79-96.  doi: 10.3934/jdg.2020005.  Google Scholar

[10]

M. IncA. I. AliyuA. Yusufa and D. Baleanu, Combined optical solitary waves and conservation laws for nonlinear Chen–Lee–Liu equation in optical fibers, Optik, 158 (2018), 297-304.   Google Scholar

[11]

C.-S. Liu, Solving an inverse Sturm-Liouville problem by a Lie-group method, Boundary Value Problems, 2008 (2008), Art. ID 749865, 18 pp. doi: 10.1155/2008/749865.  Google Scholar

[12]

C.-S. Liu, The Fictitious time integration method to solve the space and time-fractional Burgers equations, CMC, 15 (2010), 221-240.   Google Scholar

[13]

C.-S. Liu, A group preserving scheme for Burgers equation with very large Reynolds number, CMES: Computer Modeling in Engineering & Sciences, 12 (2006), 197-211.   Google Scholar

[14]

C.-S. Liu, An efficient backward group preserving scheme for the backward in time Burgers equation, CMES: Computer Modeling in Engineering & Sciences, 12 (2006), 55-65.   Google Scholar

[15]

A. MeiappaneV. P. Venkataesan and M. J. Prabavadhi, On analytical methods for solving Poisson equation, Sch. J. Res. Math. Comput. Sci., 1 (2016), 37-43.   Google Scholar

[16]

S. T. Mohyud-DinM. A. Noor and K. I. Noor, Modified variational iteration method for solving Sine-Gordon equations, World Appl. Sci. J., 6 (2009), 999-1004.   Google Scholar

[17]

M. Partohaghighi, M. Inc, D. Baleanu and S. P. Dmoshokoa, Fictitious time integration method for solving the time fractional gas dynamic equation, Thermal Science, (2019), 1–11. Google Scholar

[18]

A. Saadatmandi and M. Dehghan, Numerical solution of hyperbolic telegraph equation using the Chebyshev Tau method, Numer. Methods Partial Differ. Equ., 26 (2010), 239-252.  doi: 10.1002/num.20442.  Google Scholar

[19]

X. Wang and S. Atluri, A unification of the concepts of the variational iteration, Adomian decomposition and Picard iteration methods and a local variational iteration method, Tech Science Press, 111 (2016), 567–585. Google Scholar

[20]

V. H. Weston and S. He, Wave splitting of the telegraph equation in R3 and its application to inverse scattering, Inverse Problems, 9 (1993), 789-812.  doi: 10.1088/0266-5611/9/6/013.  Google Scholar

Figure 1.  Exact and numerical solutions and error for $ T = 0.05,\,\, m = n = 25,\,\, \zeta = 60000\,\,\kappa = 0.1 $ and $ u_i^j(0) = 0.1 $ and $ \Delta \xi = 3/10000000000 $ for Ex.1.
Figure 2.  Exact and numerical solutions and error for $ T = 0.05,\, m = m = 30,\, \zeta = 8000,\,\kappa = 0.1 $ and $ u_i^j(0) = 0.001 $ and $ \Delta \xi = 3/10000000000 $ for Ex.2.
Figure 3.  Exact and numerical solutions and error for $ T = 0.05,\, m = n = 40,\, \zeta = 7995,\,\kappa = 0.1 $ and $ u_i^j(0) = 0.001 $ and $ \Delta\xi = 3/10000000000 $ for Ex.2.
Figure 4.  Exact solution, numerical solution and error for $ T = 0.05,\, m = n = 25,\, \zeta = 5995,\,\kappa = 0.01 $ and $ u_i^j(0) = 0.01 $ and $ \Delta \xi = 3/10000000000 $ for Ex. 3.
Table 1.  Solution and error values for $ m=n=25 $ and $ u_i^j(0)=0.1 $ for Ex.1
(x, t) Numerical Exact Error
(-2, 0) 0.1353 0.1353 8.0756e-14
(-1, 0.01) 0.3641 0.3641 2.5085e-13
(0, 0.02) 0.9773 0.9773 9.6537e-13
(1, 0.03) 2.6346 2.6346 7.8534e-12
(2, 0.04) 7.0875 7.0875 2.2148e-10
(x, t) Numerical Exact Error
(-2, 0) 0.1353 0.1353 8.0756e-14
(-1, 0.01) 0.3641 0.3641 2.5085e-13
(0, 0.02) 0.9773 0.9773 9.6537e-13
(1, 0.03) 2.6346 2.6346 7.8534e-12
(2, 0.04) 7.0875 7.0875 2.2148e-10
Table 2.  Numerical and exact solutions and error values for $ m=n=30 $, and $ u_i^j(0)=0 .001 $ for Ex.2
(x, t) Numerical Exact Error
(0, 0) 0 0 0
(2, 0.01) 0.9289 0.9289 1.9657e-13
(4.02) -0.6876 -0.6876 9.7778e-14
(6, 0.03) -0.4197 -0.4197 3.7708e-14
(8, 0.04) 0.9628 0.9628 2.2468e-13
(10, 0.05) 3.6693e-16 3.6693e-16 2.9738e-44
(x, t) Numerical Exact Error
(0, 0) 0 0 0
(2, 0.01) 0.9289 0.9289 1.9657e-13
(4.02) -0.6876 -0.6876 9.7778e-14
(6, 0.03) -0.4197 -0.4197 3.7708e-14
(8, 0.04) 0.9628 0.9628 2.2468e-13
(10, 0.05) 3.6693e-16 3.6693e-16 2.9738e-44
Table 3.  Solutions with error values for $ m=n=40 $ and $ u_i^j(0)=0.001 $ for Ex. 2
(x, t) Numerical Exact Error
(-10, 0) -3.6739e-16 -3.6739e-16 2.9813e-44
(-5, 0.01) 0.9350 0.9350 4.9081e-12
(0.02) -0.9924 -0.9924 1.3054e-11
(5, 0.03) -0.9346 -0.9346 9.7228e-12
(10, 0.04) 3.6708e-16 3.6708e-16 2.9763e-44
(x, t) Numerical Exact Error
(-10, 0) -3.6739e-16 -3.6739e-16 2.9813e-44
(-5, 0.01) 0.9350 0.9350 4.9081e-12
(0.02) -0.9924 -0.9924 1.3054e-11
(5, 0.03) -0.9346 -0.9346 9.7228e-12
(10, 0.04) 3.6708e-16 3.6708e-16 2.9763e-44
Table 4.  Solutions with error values for $ m=n=25 $, $ u_i^j(0)=0.001 $ for Ex.3
(x, t) Numerical Exact Error
(-2, 0) -0.9093 -0.9093 2.6858e-13
(-1, 0.01) -0.8328 -0.8328 6.0082e-12
(0, 0.02) 0 0 3.1758e-18
(1, 0.03) 0.8173 0.8173 1.3564e-11
(2, 0.04) 0.8740 0.8740 2.4814e-13
(x, t) Numerical Exact Error
(-2, 0) -0.9093 -0.9093 2.6858e-13
(-1, 0.01) -0.8328 -0.8328 6.0082e-12
(0, 0.02) 0 0 3.1758e-18
(1, 0.03) 0.8173 0.8173 1.3564e-11
(2, 0.04) 0.8740 0.8740 2.4814e-13
[1]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[2]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[3]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020464

[4]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[5]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[6]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[7]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[8]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[9]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[10]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[11]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[12]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[13]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[14]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[15]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[16]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[17]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[18]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[19]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[20]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]