doi: 10.3934/jdg.2020030

Generalized intransitive dice: Mimicking an arbitrary tournament

Mathematics Department, The City College, 137 Street and Convent Avenue, New York City, NY 10031, USA

*

Received  July 2019 Published  September 2020

A generalized $ N $-sided die is a random variable $ D $ on a sample space of $ N $ equally likely outcomes taking values in the set of positive integers. We say of independent $ N $ sided dice $ D_i, D_j $ that $ D_i $ beats $ D_j $, written $ D_i \to D_j $, if $ Prob(D_i > D_j) > \frac{1}{2} $. Examples are known of intransitive $ 6 $-sided dice, i.e. $ D_1 \to D_2 \to D_3 $ but $ D_3 \to D_1 $. A tournament of size $ n $ is a choice of direction $ i \to j $ for each edge of the complete graph on $ n $ vertices. We show that if $ R $ is tournament on the set $ [n] = \{ 1, \dots, n \} $, then for sufficiently large $ N $ there exist sets of independent $ N $-sided dice $ \{ D_1, \dots, D_n \} $ such that $ D_i \to D_j $ if and only if $ i \to j $ in $ R $.

Citation: Ethan Akin. Generalized intransitive dice: Mimicking an arbitrary tournament. Journal of Dynamics & Games, doi: 10.3934/jdg.2020030
References:
[1]

E. Akin, Rock, paper, scissors, etc - topics in the theory of regular tournaments, preprint, arXiv: 1806.11241v1, (2018), v4(2020). Google Scholar

[2]

E. Akin, Intransitive dice - mimicking an arbitrary tournament, preprint, arXiv: 1901.09477v2, (2019). Google Scholar

[3] J. K. Blitzstein and J. Hwang, Introduction to Probability, CRC Press, Boca Raton, 2014.   Google Scholar
[4]

B. ConreyJ. GabbardK. GrantA. Liu and K. E. Morrison, Intransitive dice, Mathematics Magazine, 89 (2016), 133-143.  doi: 10.4169/math.mag.89.2.133.  Google Scholar

[5]

M. Finkelstein and E. O. Thorp, Nontransitive dice with equal means, in Optimal Play: Mathematical Studies of Games and Gambling (S. N. Ethier and W. R. Eadington, eds.), Reno: Institute for the Study of Gambling and Commercial Gaming, 2007. Google Scholar

[6]

F. Harary and L. Moser, The theory of round robin tournaments, The Amer. Math. Monthly, 73 (1966), 231-246.  doi: 10.1080/00029890.1966.11970749.  Google Scholar

[7]

G. G. Margaril-Ilyaev and V. M. Tikhomirov, Convex Analysis: Theory and Applications, Translations of Math. Monograph 222, Amer. Math. Soc., Providence, 2003.  Google Scholar

show all references

References:
[1]

E. Akin, Rock, paper, scissors, etc - topics in the theory of regular tournaments, preprint, arXiv: 1806.11241v1, (2018), v4(2020). Google Scholar

[2]

E. Akin, Intransitive dice - mimicking an arbitrary tournament, preprint, arXiv: 1901.09477v2, (2019). Google Scholar

[3] J. K. Blitzstein and J. Hwang, Introduction to Probability, CRC Press, Boca Raton, 2014.   Google Scholar
[4]

B. ConreyJ. GabbardK. GrantA. Liu and K. E. Morrison, Intransitive dice, Mathematics Magazine, 89 (2016), 133-143.  doi: 10.4169/math.mag.89.2.133.  Google Scholar

[5]

M. Finkelstein and E. O. Thorp, Nontransitive dice with equal means, in Optimal Play: Mathematical Studies of Games and Gambling (S. N. Ethier and W. R. Eadington, eds.), Reno: Institute for the Study of Gambling and Commercial Gaming, 2007. Google Scholar

[6]

F. Harary and L. Moser, The theory of round robin tournaments, The Amer. Math. Monthly, 73 (1966), 231-246.  doi: 10.1080/00029890.1966.11970749.  Google Scholar

[7]

G. G. Margaril-Ilyaev and V. M. Tikhomirov, Convex Analysis: Theory and Applications, Translations of Math. Monograph 222, Amer. Math. Soc., Providence, 2003.  Google Scholar

[1]

Nicola Pace, Angelo Sonnino. On the existence of PD-sets: Algorithms arising from automorphism groups of codes. Advances in Mathematics of Communications, 2021, 15 (2) : 267-277. doi: 10.3934/amc.2020065

[2]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[3]

Chun Liu, Huan Sun. On energetic variational approaches in modeling the nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 455-475. doi: 10.3934/dcds.2009.23.455

[4]

Jean-Paul Chehab. Damping, stabilization, and numerical filtering for the modeling and the simulation of time dependent PDEs. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021002

[5]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[6]

Niklas Kolbe, Nikolaos Sfakianakis, Christian Stinner, Christina Surulescu, Jonas Lenz. Modeling multiple taxis: Tumor invasion with phenotypic heterogeneity, haptotaxis, and unilateral interspecies repellence. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 443-481. doi: 10.3934/dcdsb.2020284

[7]

Huijuan Song, Bei Hu, Zejia Wang. Stationary solutions of a free boundary problem modeling the growth of vascular tumors with a necrotic core. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 667-691. doi: 10.3934/dcdsb.2020084

 Impact Factor: 

Article outline

[Back to Top]