Vertices of |
|
|
|
Generally a biological system is said to be permanent if under small perturbations none of the species goes to extinction. In 1979 P. Schuster, K. Sigmund, and R. Wolff [
Citation: |
Figure 1.
Two different perspectives of the polytope
Table 1.
The vertices of
Vertices of |
|
|
|
Table 2.
The equilibria on
Equilibria on |
|
|
|
Table 3.
The equilibria on
Equilibria on |
|
|
|
Table 4.
The equilibria on
Equilibria on |
|
|
|
[1] | H. N. Alishah and P. Duarte, Hamiltonian evolutionary games, Journal of Dynamics and Games, 2 (2015), 33-49. doi: 10.3934/jdg.2015.2.33. |
[2] | H. N. Alishah, P. Duarte and T. Peixe, Conservative and dissipative polymatrix replicators, Journal of Dynamics and Games, 2 (2015), 157-185. doi: 10.3934/jdg.2015.2.157. |
[3] | H. N. Alishah, P. Duarte and T. Peixe, Asymptotic Poincaré maps along the edges of polytopes, Nonlinearity, 33 (2020), 469-510. doi: 10.1088/1361-6544/ab49e6. |
[4] | P. Duarte, R. L. Fernandes and W. M. Oliva, Dynamics of the attractor in the Lotka-Volterra equations, J. Differential Equations, 149 (1998), 143-189. doi: 10.1006/jdeq.1998.3443. |
[5] | J. Hofbauer, On the occurrence of limit cycles in the Volterra-Lotka equation, Nonlinear Anal., 5 (1981), 1003-1007. doi: 10.1016/0362-546X(81)90059-6. |
[6] | J. Hofbauer and K. Sigmund, Permanence for Replicator Equations, Springer Berlin Heidelberg, 1987. doi: 10.1007/978-3-662-00748-8_7. |
[7] | J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998. doi: 10.1017/CBO9781139173179. |
[8] | J. Hofbauer, A general cooperation theorem for hypercycles, Monatsh. Math., 91 (1981), 233-240. doi: 10.1007/BF01301790. |
[9] | W. Jansen, A permanence theorem for replicator and Lotka-Volterra systems, J. Math. Biol., 25 (1987), 411-422. doi: 10.1007/BF00277165. |
[10] | A. J. Lotka, Elements of mathematical biology. (formerly published under the title Elements of Physical Biology), Dover Publications, Inc., New York, 1958. doi: 10.1002/jps.3030471044. |
[11] | J. M. Smith, The logic of animal conflict, Nature, 246 (1973), 15-18. doi: 10.1038/246015a0. |
[12] | P. Schuster and K. Sigmund, Coyness, philandering and stable strategies, Animal Behaviour, 29 (1981), 186-192. doi: 10.1016/S0003-3472(81)80165-0. |
[13] | P. Schuster and K. Sigmund, Replicator dynamics, J. Theoret. Biol., 100 (1983), 533-538. doi: 10.1016/0022-5193(83)90445-9. |
[14] | P. Schuster, K. Sigmund, J. Hofbauer and R. Wolff, Self-regulation of behaviour in animal societies, Biol. Cybernet., 40 (1981), 9-15. doi: 10.1007/BF00326676. |
[15] | P. Schuster, K. Sigmund and R. Wolff, Dynamical systems under constant organization. ⅲ. cooperative and competitive behavior of hypercycles, Journal of Differential Equations, 32 (1979), 357-368. doi: 10.1016/0022-0396(79)90039-1. |
[16] | P. D. Taylor and L. B. Jonker, Evolutionarily stable strategies and game dynamics, Math. Biosci., 40 (1978), 145-156. doi: 10.1016/0025-5564(78)90077-9. |
[17] | V. Volterra, Leç cons sur la Théorie Mathématique de la Lutte pour la Vie (Reprint of the 1931 original), Éditions Jacques Gabay, Sceaux, 1990. |
[18] | J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, New Jersey, 1944. |