January  2021, 8(1): 21-34. doi: 10.3934/jdg.2020032

Permanence in polymatrix replicators

ISEG-Lisbon School of Economics & Management, Universidade de Lisboa, REM-Research in Economics and Mathematics, CEMAPRE-Centro de Matemática Aplicada à Previsão e Decisão Económica

Received  May 2020 Published  November 2020

Fund Project: The author was supported by FCT-Fundação para a Ciência e a Tecnologia, under the project CEMAPRE - UID/MULTI/00491/2013 through national funds

Generally a biological system is said to be permanent if under small perturbations none of the species goes to extinction. In 1979 P. Schuster, K. Sigmund, and R. Wolff [15] introduced the concept of permanence as a stability notion for systems that models the self-organization of biological macromolecules. After, in 1987 W. Jansen [9], and J. Hofbauer and K. Sigmund [6] give sufficient conditions for permanence in the replicator equations. In this paper we extend these results for polymatrix replicators.

Citation: Telmo Peixe. Permanence in polymatrix replicators. Journal of Dynamics & Games, 2021, 8 (1) : 21-34. doi: 10.3934/jdg.2020032
References:
[1]

H. N. Alishah and P. Duarte, Hamiltonian evolutionary games, Journal of Dynamics and Games, 2 (2015), 33-49.  doi: 10.3934/jdg.2015.2.33.  Google Scholar

[2]

H. N. AlishahP. Duarte and T. Peixe, Conservative and dissipative polymatrix replicators, Journal of Dynamics and Games, 2 (2015), 157-185.  doi: 10.3934/jdg.2015.2.157.  Google Scholar

[3]

H. N. AlishahP. Duarte and T. Peixe, Asymptotic Poincaré maps along the edges of polytopes, Nonlinearity, 33 (2020), 469-510.  doi: 10.1088/1361-6544/ab49e6.  Google Scholar

[4]

P. DuarteR. L. Fernandes and W. M. Oliva, Dynamics of the attractor in the Lotka-Volterra equations, J. Differential Equations, 149 (1998), 143-189.  doi: 10.1006/jdeq.1998.3443.  Google Scholar

[5]

J. Hofbauer, On the occurrence of limit cycles in the Volterra-Lotka equation, Nonlinear Anal., 5 (1981), 1003-1007.  doi: 10.1016/0362-546X(81)90059-6.  Google Scholar

[6]

J. Hofbauer and K. Sigmund, Permanence for Replicator Equations, Springer Berlin Heidelberg, 1987. doi: 10.1007/978-3-662-00748-8_7.  Google Scholar

[7] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998.  doi: 10.1017/CBO9781139173179.  Google Scholar
[8]

J. Hofbauer, A general cooperation theorem for hypercycles, Monatsh. Math., 91 (1981), 233-240.  doi: 10.1007/BF01301790.  Google Scholar

[9]

W. Jansen, A permanence theorem for replicator and Lotka-Volterra systems, J. Math. Biol., 25 (1987), 411-422.  doi: 10.1007/BF00277165.  Google Scholar

[10]

A. J. Lotka, Elements of mathematical biology. (formerly published under the title Elements of Physical Biology), Dover Publications, Inc., New York, 1958. doi: 10.1002/jps.3030471044.  Google Scholar

[11]

J. M. Smith, The logic of animal conflict, Nature, 246 (1973), 15-18.  doi: 10.1038/246015a0.  Google Scholar

[12]

P. Schuster and K. Sigmund, Coyness, philandering and stable strategies, Animal Behaviour, 29 (1981), 186-192.  doi: 10.1016/S0003-3472(81)80165-0.  Google Scholar

[13]

P. Schuster and K. Sigmund, Replicator dynamics, J. Theoret. Biol., 100 (1983), 533-538.  doi: 10.1016/0022-5193(83)90445-9.  Google Scholar

[14]

P. SchusterK. SigmundJ. Hofbauer and R. Wolff, Self-regulation of behaviour in animal societies, Biol. Cybernet., 40 (1981), 9-15.  doi: 10.1007/BF00326676.  Google Scholar

[15]

P. SchusterK. Sigmund and R. Wolff, Dynamical systems under constant organization. ⅲ. cooperative and competitive behavior of hypercycles, Journal of Differential Equations, 32 (1979), 357-368.  doi: 10.1016/0022-0396(79)90039-1.  Google Scholar

[16]

P. D. Taylor and L. B. Jonker, Evolutionarily stable strategies and game dynamics, Math. Biosci., 40 (1978), 145-156.  doi: 10.1016/0025-5564(78)90077-9.  Google Scholar

[17]

V. Volterra, Leç cons sur la Théorie Mathématique de la Lutte pour la Vie (Reprint of the 1931 original), Éditions Jacques Gabay, Sceaux, 1990.  Google Scholar

[18] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, New Jersey, 1944.   Google Scholar

show all references

References:
[1]

H. N. Alishah and P. Duarte, Hamiltonian evolutionary games, Journal of Dynamics and Games, 2 (2015), 33-49.  doi: 10.3934/jdg.2015.2.33.  Google Scholar

[2]

H. N. AlishahP. Duarte and T. Peixe, Conservative and dissipative polymatrix replicators, Journal of Dynamics and Games, 2 (2015), 157-185.  doi: 10.3934/jdg.2015.2.157.  Google Scholar

[3]

H. N. AlishahP. Duarte and T. Peixe, Asymptotic Poincaré maps along the edges of polytopes, Nonlinearity, 33 (2020), 469-510.  doi: 10.1088/1361-6544/ab49e6.  Google Scholar

[4]

P. DuarteR. L. Fernandes and W. M. Oliva, Dynamics of the attractor in the Lotka-Volterra equations, J. Differential Equations, 149 (1998), 143-189.  doi: 10.1006/jdeq.1998.3443.  Google Scholar

[5]

J. Hofbauer, On the occurrence of limit cycles in the Volterra-Lotka equation, Nonlinear Anal., 5 (1981), 1003-1007.  doi: 10.1016/0362-546X(81)90059-6.  Google Scholar

[6]

J. Hofbauer and K. Sigmund, Permanence for Replicator Equations, Springer Berlin Heidelberg, 1987. doi: 10.1007/978-3-662-00748-8_7.  Google Scholar

[7] J. Hofbauer and K. Sigmund, Evolutionary Games and Population Dynamics, Cambridge University Press, Cambridge, 1998.  doi: 10.1017/CBO9781139173179.  Google Scholar
[8]

J. Hofbauer, A general cooperation theorem for hypercycles, Monatsh. Math., 91 (1981), 233-240.  doi: 10.1007/BF01301790.  Google Scholar

[9]

W. Jansen, A permanence theorem for replicator and Lotka-Volterra systems, J. Math. Biol., 25 (1987), 411-422.  doi: 10.1007/BF00277165.  Google Scholar

[10]

A. J. Lotka, Elements of mathematical biology. (formerly published under the title Elements of Physical Biology), Dover Publications, Inc., New York, 1958. doi: 10.1002/jps.3030471044.  Google Scholar

[11]

J. M. Smith, The logic of animal conflict, Nature, 246 (1973), 15-18.  doi: 10.1038/246015a0.  Google Scholar

[12]

P. Schuster and K. Sigmund, Coyness, philandering and stable strategies, Animal Behaviour, 29 (1981), 186-192.  doi: 10.1016/S0003-3472(81)80165-0.  Google Scholar

[13]

P. Schuster and K. Sigmund, Replicator dynamics, J. Theoret. Biol., 100 (1983), 533-538.  doi: 10.1016/0022-5193(83)90445-9.  Google Scholar

[14]

P. SchusterK. SigmundJ. Hofbauer and R. Wolff, Self-regulation of behaviour in animal societies, Biol. Cybernet., 40 (1981), 9-15.  doi: 10.1007/BF00326676.  Google Scholar

[15]

P. SchusterK. Sigmund and R. Wolff, Dynamical systems under constant organization. ⅲ. cooperative and competitive behavior of hypercycles, Journal of Differential Equations, 32 (1979), 357-368.  doi: 10.1016/0022-0396(79)90039-1.  Google Scholar

[16]

P. D. Taylor and L. B. Jonker, Evolutionarily stable strategies and game dynamics, Math. Biosci., 40 (1978), 145-156.  doi: 10.1016/0025-5564(78)90077-9.  Google Scholar

[17]

V. Volterra, Leç cons sur la Théorie Mathématique de la Lutte pour la Vie (Reprint of the 1931 original), Éditions Jacques Gabay, Sceaux, 1990.  Google Scholar

[18] J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior, Princeton University Press, Princeton, New Jersey, 1944.   Google Scholar
Figure 1.  Two different perspectives of the polytope $ \Gamma_{(2,2,2)} $ from Example 2 where the polymatrix replicator given by the payoff matrix $ A $ is defined. Namelly, the plot of its equilibria and three interior orbits (with initial conditions near the boundary of the polytope) that converge to the unique interior equilibrium, $ q $
Table 1.  The vertices of $ \Gamma_{(2,2,2,2)} $ and the value of $ f(v_i) $, where $ f(x) = (x-q)^TAx\, $ and $ q = \left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2} \right) \in {\rm int}\left(\Gamma_{(2,2,2,2)}\right) . $
Vertices of $ \Gamma_{(2,2,2,2)} $ $ f(v_i) $
$ v_1=\left(1,0,1,0,1,0,1,0\right) $ $ -394 $
$ v_2=\left(1,0,1,0,1,0,0,1\right) $ $ -4 $
$ v_3=\left(1,0,1,0,0,1,1,0\right) $ $ -392 $
$ v_4=\left(1,0,1,0,0,1,0,1\right) $ $ -6 $
$ v_5=\left(1,0,0,1,1,0,1,0\right) $ $ -602 $
$ v_6=\left(1,0,0,1,1,0,0,1\right) $ $ -592 $
$ v_7=\left(1,0,0,1,0,1,1,0\right) $ $ -204 $
$ v_8=\left(1,0,0,1,0,1,0,1\right) $ $ -198 $
$ v_9=\left(0,1,1,0,1,0,1,0\right) $ $ -198 $
$ v_{10}=\left(0,1,1,0,1,0,0,1\right) $ $ -204 $
$ v_{11}=\left(0,1,1,0,0,1,1,0\right) $ $ -592 $
$ v_{12}=\left(0,1,1,0,0,1,0,1\right) $ $ -602 $
$ v_{13}=\left(0,1,0,1,1,0,1,0\right) $ $ -6 $
$ v_{14}=\left(0,1,0,1,1,0,0,1\right) $ $ -392 $
$ v_{15}=\left(0,1,0,1,0,1,1,0\right) $ $ -4 $
$ v_{16}=\left(0,1,0,1,0,1,0,1\right) $ $ -394 $
Vertices of $ \Gamma_{(2,2,2,2)} $ $ f(v_i) $
$ v_1=\left(1,0,1,0,1,0,1,0\right) $ $ -394 $
$ v_2=\left(1,0,1,0,1,0,0,1\right) $ $ -4 $
$ v_3=\left(1,0,1,0,0,1,1,0\right) $ $ -392 $
$ v_4=\left(1,0,1,0,0,1,0,1\right) $ $ -6 $
$ v_5=\left(1,0,0,1,1,0,1,0\right) $ $ -602 $
$ v_6=\left(1,0,0,1,1,0,0,1\right) $ $ -592 $
$ v_7=\left(1,0,0,1,0,1,1,0\right) $ $ -204 $
$ v_8=\left(1,0,0,1,0,1,0,1\right) $ $ -198 $
$ v_9=\left(0,1,1,0,1,0,1,0\right) $ $ -198 $
$ v_{10}=\left(0,1,1,0,1,0,0,1\right) $ $ -204 $
$ v_{11}=\left(0,1,1,0,0,1,1,0\right) $ $ -592 $
$ v_{12}=\left(0,1,1,0,0,1,0,1\right) $ $ -602 $
$ v_{13}=\left(0,1,0,1,1,0,1,0\right) $ $ -6 $
$ v_{14}=\left(0,1,0,1,1,0,0,1\right) $ $ -392 $
$ v_{15}=\left(0,1,0,1,0,1,1,0\right) $ $ -4 $
$ v_{16}=\left(0,1,0,1,0,1,0,1\right) $ $ -394 $
Table 2.  The equilibria on $ 3d $-faces of $ \Gamma_{(2,2,2,2)} $ and the value of $ f(q_i) $, where $ f(x) = (x-q)^TAx\, $ and $ q = \left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2} \right) \in {\rm int}\left(\Gamma_{(2,2,2,2)}\right) . $
Equilibria on $ 3d $-faces of $ \Gamma_{(2,2,2,2)} $ $ f(q_i) $
$ q_1=\left(0.05266, 0.9473, 0.93275, 0.0672483, 0.991199,\frac{9049}{1028189}, 0, 1\right) $ $ -201.7 $
$ q_2=\left( 0.9473, 0.05266, 0.0672483, 0.93275,\frac{9049}{1028189}, 0.991199, 1, 0 \right) $ $ -201.7 $
Equilibria on $ 3d $-faces of $ \Gamma_{(2,2,2,2)} $ $ f(q_i) $
$ q_1=\left(0.05266, 0.9473, 0.93275, 0.0672483, 0.991199,\frac{9049}{1028189}, 0, 1\right) $ $ -201.7 $
$ q_2=\left( 0.9473, 0.05266, 0.0672483, 0.93275,\frac{9049}{1028189}, 0.991199, 1, 0 \right) $ $ -201.7 $
Table 3.  The equilibria on $ 2d $-faces of $ \Gamma_{(2,2,2,2)} $ and the value of $ f(q_i) $, where $ f(x) = (x-q)^TAx\, $ and $ q = \left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2} \right) \in {\rm int}\left(\Gamma_{(2,2,2,2)}\right) . $
Equilibria on $ 2d $-faces of $ \Gamma_{(2,2,2,2)} $ $ f(q_i) $
$ q_3=\left(0,1,0,1,\frac{9803}{29100},\frac{19297}{29100},\frac{893}{2910},\frac{2017}{2910}\right) $ $ -19.2 $
$ q_4=\left(0,1,1,0,\frac{9649}{14550},\frac{4901}{14550},\frac{994}{1455},\frac{461}{1455}\right) $ $ -76.7 $
$ q_5=\left(0,1,\frac{171}{400},\frac{229}{400},\frac{29}{40},\frac{11}{40},0,1\right) $ $ -197.4 $
$ q_6=\left(1,0,0,1,\frac{4901}{14550},\frac{9649}{14550},\frac{461}{1455},\frac{994}{1455}\right) $ $ -76.7 $
$ q_7=\left(1,0,1,0,\frac{19297}{29100},\frac{9803}{29100},\frac{2017}{2910},\frac{893}{2910}\right) $ $ -19.2 $
$ q_8=\left(1,0,\frac{229}{400},\frac{171}{400},\frac{11}{40},\frac{29}{40},1,0\right) $ $ -197.4 $
Equilibria on $ 2d $-faces of $ \Gamma_{(2,2,2,2)} $ $ f(q_i) $
$ q_3=\left(0,1,0,1,\frac{9803}{29100},\frac{19297}{29100},\frac{893}{2910},\frac{2017}{2910}\right) $ $ -19.2 $
$ q_4=\left(0,1,1,0,\frac{9649}{14550},\frac{4901}{14550},\frac{994}{1455},\frac{461}{1455}\right) $ $ -76.7 $
$ q_5=\left(0,1,\frac{171}{400},\frac{229}{400},\frac{29}{40},\frac{11}{40},0,1\right) $ $ -197.4 $
$ q_6=\left(1,0,0,1,\frac{4901}{14550},\frac{9649}{14550},\frac{461}{1455},\frac{994}{1455}\right) $ $ -76.7 $
$ q_7=\left(1,0,1,0,\frac{19297}{29100},\frac{9803}{29100},\frac{2017}{2910},\frac{893}{2910}\right) $ $ -19.2 $
$ q_8=\left(1,0,\frac{229}{400},\frac{171}{400},\frac{11}{40},\frac{29}{40},1,0\right) $ $ -197.4 $
Table 4.  The equilibria on $ 1d $-faces of $ \Gamma_{(2,2,2,2)} $ and the value of $ f(q_i) $, where $ f(x) = (x-q)^TAx\, $ and $ q = \left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2} \right) \in {\rm int}\left(\Gamma_{(2,2,2,2)}\right) . $
Equilibria on $ 1d $-faces of $ \Gamma_{(2,2,2,2)} $ $ f(q_i) $
$ q_9=\left(0,1,0,1,1,0,\frac{97}{100},\frac{3}{100} \right) $ $ -5.94 $
$ q_{10}=\left(1,0,1,0,0,1,\frac{3}{100},\frac{97}{100} \right) $ $ -5.94 $
$ q_{11}=\left(0,1,1,0,0,1,\frac{1}{50},\frac{49}{50} \right) $ $ -593.96 $
$ q_{12}=\left(1,0,0,1,1,0,\frac{49}{50},\frac{1}{50} \right) $ $ -593.96 $
$ q_{13}=\left(0,1,1,0,\frac{47}{95},\frac{48}{95},1,0 \right) $ $ -207.1 $
$ q_{14}=\left(1,0,0,1,\frac{48}{95},\frac{47}{95},0,1 \right) $ $ -207.1 $
$ q_{15}=\left(0,1,\frac{2}{5},\frac{3}{5},1,0,0,1 \right) $ $ -307.2 $
$ q_{16}=\left(1,0,\frac{3}{5},\frac{2}{5},0,1,1,0 \right) $ $ -307.2 $
$ q_{17}=\left(0,1,0,1,\frac{1}{2},\frac{1}{2},0,1 \right) $ $ -203 $
$ q_{18}=\left(1,0,1,0,\frac{1}{2},\frac{1}{2},1,0 \right) $ $ -203 $
$ q_{19}=\left(0,1,\frac{1}{2},\frac{1}{2},0,1,0,1 \right) $ $ -488 $
$ q_{20}=\left(1,0,\frac{1}{2},\frac{1}{2},1,0,1,0 \right) $ $ -488 $
Equilibria on $ 1d $-faces of $ \Gamma_{(2,2,2,2)} $ $ f(q_i) $
$ q_9=\left(0,1,0,1,1,0,\frac{97}{100},\frac{3}{100} \right) $ $ -5.94 $
$ q_{10}=\left(1,0,1,0,0,1,\frac{3}{100},\frac{97}{100} \right) $ $ -5.94 $
$ q_{11}=\left(0,1,1,0,0,1,\frac{1}{50},\frac{49}{50} \right) $ $ -593.96 $
$ q_{12}=\left(1,0,0,1,1,0,\frac{49}{50},\frac{1}{50} \right) $ $ -593.96 $
$ q_{13}=\left(0,1,1,0,\frac{47}{95},\frac{48}{95},1,0 \right) $ $ -207.1 $
$ q_{14}=\left(1,0,0,1,\frac{48}{95},\frac{47}{95},0,1 \right) $ $ -207.1 $
$ q_{15}=\left(0,1,\frac{2}{5},\frac{3}{5},1,0,0,1 \right) $ $ -307.2 $
$ q_{16}=\left(1,0,\frac{3}{5},\frac{2}{5},0,1,1,0 \right) $ $ -307.2 $
$ q_{17}=\left(0,1,0,1,\frac{1}{2},\frac{1}{2},0,1 \right) $ $ -203 $
$ q_{18}=\left(1,0,1,0,\frac{1}{2},\frac{1}{2},1,0 \right) $ $ -203 $
$ q_{19}=\left(0,1,\frac{1}{2},\frac{1}{2},0,1,0,1 \right) $ $ -488 $
$ q_{20}=\left(1,0,\frac{1}{2},\frac{1}{2},1,0,1,0 \right) $ $ -488 $
[1]

Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035

[2]

Dan Wei, Shangjiang Guo. Qualitative analysis of a Lotka-Volterra competition-diffusion-advection system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2599-2623. doi: 10.3934/dcdsb.2020197

[3]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[4]

Tao Wu, Yu Lei, Jiao Shi, Maoguo Gong. An evolutionary multiobjective method for low-rank and sparse matrix decomposition. Big Data & Information Analytics, 2017, 2 (1) : 23-37. doi: 10.3934/bdia.2017006

[5]

Shangzhi Li, Shangjiang Guo. Permanence and extinction of a stochastic SIS epidemic model with three independent Brownian motions. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2693-2719. doi: 10.3934/dcdsb.2020201

[6]

Guillaume Bal, Wenjia Jing. Homogenization and corrector theory for linear transport in random media. Discrete & Continuous Dynamical Systems - A, 2010, 28 (4) : 1311-1343. doi: 10.3934/dcds.2010.28.1311

[7]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1717-1746. doi: 10.3934/dcdss.2020451

[8]

Akio Matsumot, Ferenc Szidarovszky. Stability switching and its directions in cournot duopoly game with three delays. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021069

[9]

W. Cary Huffman. On the theory of $\mathbb{F}_q$-linear $\mathbb{F}_{q^t}$-codes. Advances in Mathematics of Communications, 2013, 7 (3) : 349-378. doi: 10.3934/amc.2013.7.349

[10]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[11]

Vladimir Georgiev, Sandra Lucente. Focusing nlkg equation with singular potential. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1387-1406. doi: 10.3934/cpaa.2018068

[12]

Daoyin He, Ingo Witt, Huicheng Yin. On the strauss index of semilinear tricomi equation. Communications on Pure & Applied Analysis, 2020, 19 (10) : 4817-4838. doi: 10.3934/cpaa.2020213

[13]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[14]

Diana Keller. Optimal control of a linear stochastic Schrödinger equation. Conference Publications, 2013, 2013 (special) : 437-446. doi: 10.3934/proc.2013.2013.437

[15]

Simone Cacace, Maurizio Falcone. A dynamic domain decomposition for the eikonal-diffusion equation. Discrete & Continuous Dynamical Systems - S, 2016, 9 (1) : 109-123. doi: 10.3934/dcdss.2016.9.109

[16]

Naeem M. H. Alkoumi, Pedro J. Torres. Estimates on the number of limit cycles of a generalized Abel equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (1) : 25-34. doi: 10.3934/dcds.2011.31.25

[17]

Jumpei Inoue, Kousuke Kuto. On the unboundedness of the ratio of species and resources for the diffusive logistic equation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2441-2450. doi: 10.3934/dcdsb.2020186

[18]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[19]

Kin Ming Hui, Soojung Kim. Asymptotic large time behavior of singular solutions of the fast diffusion equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (11) : 5943-5977. doi: 10.3934/dcds.2017258

[20]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1649-1672. doi: 10.3934/dcdss.2020448

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]