# American Institute of Mathematical Sciences

January  2021, 8(1): 21-34. doi: 10.3934/jdg.2020032

## Permanence in polymatrix replicators

 ISEG-Lisbon School of Economics & Management, Universidade de Lisboa, REM-Research in Economics and Mathematics, CEMAPRE-Centro de Matemática Aplicada à Previsão e Decisão Económica

Received  May 2020 Published  November 2020

Fund Project: The author was supported by FCT-Fundação para a Ciência e a Tecnologia, under the project CEMAPRE - UID/MULTI/00491/2013 through national funds

Generally a biological system is said to be permanent if under small perturbations none of the species goes to extinction. In 1979 P. Schuster, K. Sigmund, and R. Wolff [15] introduced the concept of permanence as a stability notion for systems that models the self-organization of biological macromolecules. After, in 1987 W. Jansen [9], and J. Hofbauer and K. Sigmund [6] give sufficient conditions for permanence in the replicator equations. In this paper we extend these results for polymatrix replicators.

Citation: Telmo Peixe. Permanence in polymatrix replicators. Journal of Dynamics & Games, 2021, 8 (1) : 21-34. doi: 10.3934/jdg.2020032
##### References:

show all references

##### References:
Two different perspectives of the polytope $\Gamma_{(2,2,2)}$ from Example 2 where the polymatrix replicator given by the payoff matrix $A$ is defined. Namelly, the plot of its equilibria and three interior orbits (with initial conditions near the boundary of the polytope) that converge to the unique interior equilibrium, $q$
The vertices of $\Gamma_{(2,2,2,2)}$ and the value of $f(v_i)$, where $f(x) = (x-q)^TAx\,$ and $q = \left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2} \right) \in {\rm int}\left(\Gamma_{(2,2,2,2)}\right) .$
 Vertices of $\Gamma_{(2,2,2,2)}$ $f(v_i)$ $v_1=\left(1,0,1,0,1,0,1,0\right)$ $-394$ $v_2=\left(1,0,1,0,1,0,0,1\right)$ $-4$ $v_3=\left(1,0,1,0,0,1,1,0\right)$ $-392$ $v_4=\left(1,0,1,0,0,1,0,1\right)$ $-6$ $v_5=\left(1,0,0,1,1,0,1,0\right)$ $-602$ $v_6=\left(1,0,0,1,1,0,0,1\right)$ $-592$ $v_7=\left(1,0,0,1,0,1,1,0\right)$ $-204$ $v_8=\left(1,0,0,1,0,1,0,1\right)$ $-198$ $v_9=\left(0,1,1,0,1,0,1,0\right)$ $-198$ $v_{10}=\left(0,1,1,0,1,0,0,1\right)$ $-204$ $v_{11}=\left(0,1,1,0,0,1,1,0\right)$ $-592$ $v_{12}=\left(0,1,1,0,0,1,0,1\right)$ $-602$ $v_{13}=\left(0,1,0,1,1,0,1,0\right)$ $-6$ $v_{14}=\left(0,1,0,1,1,0,0,1\right)$ $-392$ $v_{15}=\left(0,1,0,1,0,1,1,0\right)$ $-4$ $v_{16}=\left(0,1,0,1,0,1,0,1\right)$ $-394$
 Vertices of $\Gamma_{(2,2,2,2)}$ $f(v_i)$ $v_1=\left(1,0,1,0,1,0,1,0\right)$ $-394$ $v_2=\left(1,0,1,0,1,0,0,1\right)$ $-4$ $v_3=\left(1,0,1,0,0,1,1,0\right)$ $-392$ $v_4=\left(1,0,1,0,0,1,0,1\right)$ $-6$ $v_5=\left(1,0,0,1,1,0,1,0\right)$ $-602$ $v_6=\left(1,0,0,1,1,0,0,1\right)$ $-592$ $v_7=\left(1,0,0,1,0,1,1,0\right)$ $-204$ $v_8=\left(1,0,0,1,0,1,0,1\right)$ $-198$ $v_9=\left(0,1,1,0,1,0,1,0\right)$ $-198$ $v_{10}=\left(0,1,1,0,1,0,0,1\right)$ $-204$ $v_{11}=\left(0,1,1,0,0,1,1,0\right)$ $-592$ $v_{12}=\left(0,1,1,0,0,1,0,1\right)$ $-602$ $v_{13}=\left(0,1,0,1,1,0,1,0\right)$ $-6$ $v_{14}=\left(0,1,0,1,1,0,0,1\right)$ $-392$ $v_{15}=\left(0,1,0,1,0,1,1,0\right)$ $-4$ $v_{16}=\left(0,1,0,1,0,1,0,1\right)$ $-394$
The equilibria on $3d$-faces of $\Gamma_{(2,2,2,2)}$ and the value of $f(q_i)$, where $f(x) = (x-q)^TAx\,$ and $q = \left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2} \right) \in {\rm int}\left(\Gamma_{(2,2,2,2)}\right) .$
 Equilibria on $3d$-faces of $\Gamma_{(2,2,2,2)}$ $f(q_i)$ $q_1=\left(0.05266, 0.9473, 0.93275, 0.0672483, 0.991199,\frac{9049}{1028189}, 0, 1\right)$ $-201.7$ $q_2=\left( 0.9473, 0.05266, 0.0672483, 0.93275,\frac{9049}{1028189}, 0.991199, 1, 0 \right)$ $-201.7$
 Equilibria on $3d$-faces of $\Gamma_{(2,2,2,2)}$ $f(q_i)$ $q_1=\left(0.05266, 0.9473, 0.93275, 0.0672483, 0.991199,\frac{9049}{1028189}, 0, 1\right)$ $-201.7$ $q_2=\left( 0.9473, 0.05266, 0.0672483, 0.93275,\frac{9049}{1028189}, 0.991199, 1, 0 \right)$ $-201.7$
The equilibria on $2d$-faces of $\Gamma_{(2,2,2,2)}$ and the value of $f(q_i)$, where $f(x) = (x-q)^TAx\,$ and $q = \left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2} \right) \in {\rm int}\left(\Gamma_{(2,2,2,2)}\right) .$
 Equilibria on $2d$-faces of $\Gamma_{(2,2,2,2)}$ $f(q_i)$ $q_3=\left(0,1,0,1,\frac{9803}{29100},\frac{19297}{29100},\frac{893}{2910},\frac{2017}{2910}\right)$ $-19.2$ $q_4=\left(0,1,1,0,\frac{9649}{14550},\frac{4901}{14550},\frac{994}{1455},\frac{461}{1455}\right)$ $-76.7$ $q_5=\left(0,1,\frac{171}{400},\frac{229}{400},\frac{29}{40},\frac{11}{40},0,1\right)$ $-197.4$ $q_6=\left(1,0,0,1,\frac{4901}{14550},\frac{9649}{14550},\frac{461}{1455},\frac{994}{1455}\right)$ $-76.7$ $q_7=\left(1,0,1,0,\frac{19297}{29100},\frac{9803}{29100},\frac{2017}{2910},\frac{893}{2910}\right)$ $-19.2$ $q_8=\left(1,0,\frac{229}{400},\frac{171}{400},\frac{11}{40},\frac{29}{40},1,0\right)$ $-197.4$
 Equilibria on $2d$-faces of $\Gamma_{(2,2,2,2)}$ $f(q_i)$ $q_3=\left(0,1,0,1,\frac{9803}{29100},\frac{19297}{29100},\frac{893}{2910},\frac{2017}{2910}\right)$ $-19.2$ $q_4=\left(0,1,1,0,\frac{9649}{14550},\frac{4901}{14550},\frac{994}{1455},\frac{461}{1455}\right)$ $-76.7$ $q_5=\left(0,1,\frac{171}{400},\frac{229}{400},\frac{29}{40},\frac{11}{40},0,1\right)$ $-197.4$ $q_6=\left(1,0,0,1,\frac{4901}{14550},\frac{9649}{14550},\frac{461}{1455},\frac{994}{1455}\right)$ $-76.7$ $q_7=\left(1,0,1,0,\frac{19297}{29100},\frac{9803}{29100},\frac{2017}{2910},\frac{893}{2910}\right)$ $-19.2$ $q_8=\left(1,0,\frac{229}{400},\frac{171}{400},\frac{11}{40},\frac{29}{40},1,0\right)$ $-197.4$
The equilibria on $1d$-faces of $\Gamma_{(2,2,2,2)}$ and the value of $f(q_i)$, where $f(x) = (x-q)^TAx\,$ and $q = \left(\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2},\frac{1}{2} \right) \in {\rm int}\left(\Gamma_{(2,2,2,2)}\right) .$
 Equilibria on $1d$-faces of $\Gamma_{(2,2,2,2)}$ $f(q_i)$ $q_9=\left(0,1,0,1,1,0,\frac{97}{100},\frac{3}{100} \right)$ $-5.94$ $q_{10}=\left(1,0,1,0,0,1,\frac{3}{100},\frac{97}{100} \right)$ $-5.94$ $q_{11}=\left(0,1,1,0,0,1,\frac{1}{50},\frac{49}{50} \right)$ $-593.96$ $q_{12}=\left(1,0,0,1,1,0,\frac{49}{50},\frac{1}{50} \right)$ $-593.96$ $q_{13}=\left(0,1,1,0,\frac{47}{95},\frac{48}{95},1,0 \right)$ $-207.1$ $q_{14}=\left(1,0,0,1,\frac{48}{95},\frac{47}{95},0,1 \right)$ $-207.1$ $q_{15}=\left(0,1,\frac{2}{5},\frac{3}{5},1,0,0,1 \right)$ $-307.2$ $q_{16}=\left(1,0,\frac{3}{5},\frac{2}{5},0,1,1,0 \right)$ $-307.2$ $q_{17}=\left(0,1,0,1,\frac{1}{2},\frac{1}{2},0,1 \right)$ $-203$ $q_{18}=\left(1,0,1,0,\frac{1}{2},\frac{1}{2},1,0 \right)$ $-203$ $q_{19}=\left(0,1,\frac{1}{2},\frac{1}{2},0,1,0,1 \right)$ $-488$ $q_{20}=\left(1,0,\frac{1}{2},\frac{1}{2},1,0,1,0 \right)$ $-488$
 Equilibria on $1d$-faces of $\Gamma_{(2,2,2,2)}$ $f(q_i)$ $q_9=\left(0,1,0,1,1,0,\frac{97}{100},\frac{3}{100} \right)$ $-5.94$ $q_{10}=\left(1,0,1,0,0,1,\frac{3}{100},\frac{97}{100} \right)$ $-5.94$ $q_{11}=\left(0,1,1,0,0,1,\frac{1}{50},\frac{49}{50} \right)$ $-593.96$ $q_{12}=\left(1,0,0,1,1,0,\frac{49}{50},\frac{1}{50} \right)$ $-593.96$ $q_{13}=\left(0,1,1,0,\frac{47}{95},\frac{48}{95},1,0 \right)$ $-207.1$ $q_{14}=\left(1,0,0,1,\frac{48}{95},\frac{47}{95},0,1 \right)$ $-207.1$ $q_{15}=\left(0,1,\frac{2}{5},\frac{3}{5},1,0,0,1 \right)$ $-307.2$ $q_{16}=\left(1,0,\frac{3}{5},\frac{2}{5},0,1,1,0 \right)$ $-307.2$ $q_{17}=\left(0,1,0,1,\frac{1}{2},\frac{1}{2},0,1 \right)$ $-203$ $q_{18}=\left(1,0,1,0,\frac{1}{2},\frac{1}{2},1,0 \right)$ $-203$ $q_{19}=\left(0,1,\frac{1}{2},\frac{1}{2},0,1,0,1 \right)$ $-488$ $q_{20}=\left(1,0,\frac{1}{2},\frac{1}{2},1,0,1,0 \right)$ $-488$
 [1] Hassan Najafi Alishah. Conservative replicator and Lotka-Volterra equations in the context of Dirac\big-isotropic structures. Journal of Geometric Mechanics, 2020, 12 (2) : 149-164. doi: 10.3934/jgm.2020008 [2] Suqing Lin, Zhengyi Lu. Permanence for two-species Lotka-Volterra systems with delays. Mathematical Biosciences & Engineering, 2006, 3 (1) : 137-144. doi: 10.3934/mbe.2006.3.137 [3] Guichen Lu, Zhengyi Lu. Permanence for two-species Lotka-Volterra cooperative systems with delays. Mathematical Biosciences & Engineering, 2008, 5 (3) : 477-484. doi: 10.3934/mbe.2008.5.477 [4] Dan Li, Jing'an Cui, Yan Zhang. Permanence and extinction of non-autonomous Lotka-Volterra facultative systems with jump-diffusion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2069-2088. doi: 10.3934/dcdsb.2015.20.2069 [5] Alexander S. Bratus, Vladimir P. Posvyanskii, Artem S. Novozhilov. A note on the replicator equation with explicit space and global regulation. Mathematical Biosciences & Engineering, 2011, 8 (3) : 659-676. doi: 10.3934/mbe.2011.8.659 [6] Vassilis G. Papanicolaou, Kyriaki Vasilakopoulou. Similarity solutions of a multidimensional replicator dynamics integrodifferential equation. Journal of Dynamics & Games, 2016, 3 (1) : 51-74. doi: 10.3934/jdg.2016003 [7] Gunter Neumann, Stefan Schuster. Modeling the rock - scissors - paper game between bacteriocin producing bacteria by Lotka-Volterra equations. Discrete & Continuous Dynamical Systems - B, 2007, 8 (1) : 207-228. doi: 10.3934/dcdsb.2007.8.207 [8] Juan Luis García Guirao, Marek Lampart. Transitivity of a Lotka-Volterra map. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 75-82. doi: 10.3934/dcdsb.2008.9.75 [9] Sylvain Sorin. Replicator dynamics: Old and new. Journal of Dynamics & Games, 2020, 7 (4) : 365-386. doi: 10.3934/jdg.2020028 [10] Xiao He, Sining Zheng. Protection zone in a modified Lotka-Volterra model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (7) : 2027-2038. doi: 10.3934/dcdsb.2015.20.2027 [11] Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic & Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187 [12] Anna Lisa Amadori, Astridh Boccabella, Roberto Natalini. A hyperbolic model of spatial evolutionary game theory. Communications on Pure & Applied Analysis, 2012, 11 (3) : 981-1002. doi: 10.3934/cpaa.2012.11.981 [13] Guo-Bao Zhang, Ruyun Ma, Xue-Shi Li. Traveling waves of a Lotka-Volterra strong competition system with nonlocal dispersal. Discrete & Continuous Dynamical Systems - B, 2018, 23 (2) : 587-608. doi: 10.3934/dcdsb.2018035 [14] Ting-Hui Yang, Weinian Zhang, Kaijen Cheng. Global dynamics of three species omnivory models with Lotka-Volterra interaction. Discrete & Continuous Dynamical Systems - B, 2016, 21 (8) : 2867-2881. doi: 10.3934/dcdsb.2016077 [15] Shaohua Chen, Runzhang Xu, Hongtao Yang. Global and blowup solutions for general Lotka-Volterra systems. Communications on Pure & Applied Analysis, 2016, 15 (5) : 1757-1768. doi: 10.3934/cpaa.2016012 [16] Lih-Ing W. Roeger, Razvan Gelca. Dynamically consistent discrete-time Lotka-Volterra competition models. Conference Publications, 2009, 2009 (Special) : 650-658. doi: 10.3934/proc.2009.2009.650 [17] Qi Wang, Yang Song, Lingjie Shao. Boundedness and persistence of populations in advective Lotka-Volterra competition system. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2245-2263. doi: 10.3934/dcdsb.2018195 [18] Yuan Lou, Dongmei Xiao, Peng Zhou. Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment. Discrete & Continuous Dynamical Systems, 2016, 36 (2) : 953-969. doi: 10.3934/dcds.2016.36.953 [19] Linping Peng, Zhaosheng Feng, Changjian Liu. Quadratic perturbations of a quadratic reversible Lotka-Volterra system with two centers. Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4807-4826. doi: 10.3934/dcds.2014.34.4807 [20] Bang-Sheng Han, Zhi-Cheng Wang, Zengji Du. Traveling waves for nonlocal Lotka-Volterra competition systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (5) : 1959-1983. doi: 10.3934/dcdsb.2020011

Impact Factor:

## Tools

Article outline

Figures and Tables