January  2021, 8(1): 69-99. doi: 10.3934/jdg.2021002

A dynamic for production economies with multiple equilibria

1. 

Universidad Autónoma de San Luis Potosí, Facultad de Economía, San Luis Potosí, 78213, México

2. 

Instituto Potosino de Investigación Científica y Tecnológica, División de Control y Sistemas Dinámicos, San Luis Potosí, 78216, México

* Corresponding author: Humberto Muñiz

Received  September 2020 Revised  December 2020 Published  January 2021

In this article, we extend to private ownership production economies, the results presented by Bergstrom, Shimomura, and Yamato (2009) on the multiplicity of equilibria for the special kind of pure-exchanges economies called Shapley-Shubik economies. Furthermore, a dynamic system that represents the changes in the distribution of the firms on the production branches is introduced. For the first purpose, we introduce a particular, but large enough, production sector to the Shapley-Shubik economies, for which a simple technique to build private-ownership economies with a multiplicity of equilibria is developed. In this context, we analyze the repercussions on the behavior of the economy when the number of possible equilibria changes due to rational decisions on the production side. For the second purpose, we assume that the rational decisions on the production side provoke a change in the distribution of the firms over the set of branches of production.

Citation: Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, 2021, 8 (1) : 69-99. doi: 10.3934/jdg.2021002
References:
[1]

E. Accinelli and E. Covarrubias, Evolution and jump in a Walrasian framework, J. Dyn. Games, 3 (2016), 279-301.  doi: 10.3934/jdg.2016015.  Google Scholar

[2]

T. C. Bergstrom, K.-I. Shimomura and T. Yamato, Simple economies with multiple equilibria, B. E. J. Theor. Econ., 9 (2009), 31pp. doi: 10.2202/1935-1704.1609.  Google Scholar

[3]

E. Dierker, Two remarks on the number of equilibria of an economy, Econometrica, 40 (1972), 951-953.  doi: 10.2307/1912091.  Google Scholar

[4]

T. Hens and B. Pilgrim, The index-theorem, in General Equilibrium Foundations of Finance, Theory and Decision Library, 33, Springer, Boston, MA, 2002. doi: 10.1007/978-1-4757-5317-2_4.  Google Scholar

[5]

T. J. Kehoe, An index theorem for general equilibrium models with production, Econometrica, 48 (1980), 1211-1232.  doi: 10.2307/1912179.  Google Scholar

[6]

T. J. Kehoe, Multiplicty of equilbria and compartive statics, Quart. J. Econom., 100 (1985), 119-147.  doi: 10.2307/1885738.  Google Scholar

[7] A. Mas-Colell, The Theory of General Economic Equilbrium. A Differential Approach, Econometric Society Monographs, 9, Cambridge University Press, Cambridge, 1989.   Google Scholar
[8] P. A. Samuelson, Foundations of Economic Analysis, Harvard University Press, Cambridge, Mass., 1947.   Google Scholar
[9]

L. Shapley and M. Shubik, An example of a trading economy with three competitive equilibria, J. Political Economy, 85 (1997), 873-875.  doi: 10.1086/260607.  Google Scholar

show all references

References:
[1]

E. Accinelli and E. Covarrubias, Evolution and jump in a Walrasian framework, J. Dyn. Games, 3 (2016), 279-301.  doi: 10.3934/jdg.2016015.  Google Scholar

[2]

T. C. Bergstrom, K.-I. Shimomura and T. Yamato, Simple economies with multiple equilibria, B. E. J. Theor. Econ., 9 (2009), 31pp. doi: 10.2202/1935-1704.1609.  Google Scholar

[3]

E. Dierker, Two remarks on the number of equilibria of an economy, Econometrica, 40 (1972), 951-953.  doi: 10.2307/1912091.  Google Scholar

[4]

T. Hens and B. Pilgrim, The index-theorem, in General Equilibrium Foundations of Finance, Theory and Decision Library, 33, Springer, Boston, MA, 2002. doi: 10.1007/978-1-4757-5317-2_4.  Google Scholar

[5]

T. J. Kehoe, An index theorem for general equilibrium models with production, Econometrica, 48 (1980), 1211-1232.  doi: 10.2307/1912179.  Google Scholar

[6]

T. J. Kehoe, Multiplicty of equilbria and compartive statics, Quart. J. Econom., 100 (1985), 119-147.  doi: 10.2307/1885738.  Google Scholar

[7] A. Mas-Colell, The Theory of General Economic Equilbrium. A Differential Approach, Econometric Society Monographs, 9, Cambridge University Press, Cambridge, 1989.   Google Scholar
[8] P. A. Samuelson, Foundations of Economic Analysis, Harvard University Press, Cambridge, Mass., 1947.   Google Scholar
[9]

L. Shapley and M. Shubik, An example of a trading economy with three competitive equilibria, J. Political Economy, 85 (1997), 873-875.  doi: 10.1086/260607.  Google Scholar

Figure 1.  Example 1: $ \omega=\left((5,2),(2,3)\right) $, $ f(x)=5.5x-\dfrac{1}{2}x^2 $, equilibria prices at $ p_1=1/2 $, $ p_2=1 $, $ p_3=2 $
Figure 2.  Example 2: $ r = 7/9 $ equilibrium price at $ p_1 = 0.5 $ is singular
Figure 3.  Example 4: equilibria prices at $ p\approx 0.154648, $ $ p=1 $ and $ p=6.194385 $
Figure 4.  Example 5: equilibria prices at $ p_1\approx 0.1792472498915, $ $ p_2=2 $ and $ p_3\approx 2.6915745984313 $
Figure 5.  Example 6: equilibria prices at $ p_1\approx 0.125623594624, $ $ p_2=1 $ and $ p_3\approx 1.0747180810635 $. Distribution $ (10,40) $
Figure 6.  Example 6: equilibria prices at $ p_1\approx 0.17025278062395, $ $ p_2 \approx 0.6155470462368 $ and $ p_3\approx 1.5223658675626 $. Distribution $ (11,39) $
Figure 7.  Example 7: Blue line represents the demand function $ x_2^1(p) = \phi_1(p^{-1}) $, red line represent right hand side of equation 26. Distribution $ (12,38) $
Figure 8.  Example 7: Blue line represents the demand function $ x_2^1(p)=\phi_1(p^{-1}) $, red line represent right hand side of equation 26. Distribution $ (14,36) $
Figure 9.  Profit analysis example 7: Blue line represents $ \pi_1(p) $, while red line represent $ \pi_2(p) $
Figure 10.  Profit table for example 7
Figure 11.  Utility table for example 7
[1]

Jingzhen Liu, Ka-Fai Cedric Yiu, Tak Kuen Siu, Wai-Ki Ching. Optimal insurance in a changing economy. Mathematical Control & Related Fields, 2014, 4 (2) : 187-202. doi: 10.3934/mcrf.2014.4.187

[2]

M. D. Troutt, S. H. Hou, W. K. Pang. Multiple workshift options in aggregrate production Multiple workshift options in aggregrate production. Journal of Industrial & Management Optimization, 2006, 2 (4) : 387-398. doi: 10.3934/jimo.2006.2.387

[3]

Bo Wang, Jiguang Bao. Mirror symmetry for a Hessian over-determined problem and its generalization. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2305-2316. doi: 10.3934/cpaa.2014.13.2305

[4]

Marzia Bisi, Giampiero Spiga. A Boltzmann-type model for market economy and its continuous trading limit. Kinetic & Related Models, 2010, 3 (2) : 223-239. doi: 10.3934/krm.2010.3.223

[5]

Nicola Bellomo, Sarah De Nigris, Damián Knopoff, Matteo Morini, Pietro Terna. Swarms dynamics approach to behavioral economy: Theoretical tools and price sequences. Networks & Heterogeneous Media, 2020, 15 (3) : 353-368. doi: 10.3934/nhm.2020022

[6]

Lou Caccetta, Elham Mardaneh. Joint pricing and production planning for fixed priced multiple products with backorders. Journal of Industrial & Management Optimization, 2010, 6 (1) : 123-147. doi: 10.3934/jimo.2010.6.123

[7]

Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic & Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011

[8]

Katherine A. Kime. Palindromic control and mirror symmetries in finite difference discretizations of 1-D Schrödinger equations. Discrete & Continuous Dynamical Systems - B, 2018, 23 (4) : 1601-1621. doi: 10.3934/dcdsb.2018063

[9]

Ruofeng Rao, Shouming Zhong. Input-to-state stability and no-inputs stabilization of delayed feedback chaotic financial system involved in open and closed economy. Discrete & Continuous Dynamical Systems - S, 2021, 14 (4) : 1375-1393. doi: 10.3934/dcdss.2020280

[10]

Chongyang Liu, Meijia Han. Time-delay optimal control of a fed-batch production involving multiple feeds. Discrete & Continuous Dynamical Systems - S, 2020, 13 (6) : 1697-1709. doi: 10.3934/dcdss.2020099

[11]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[12]

Biswajit Sarkar, Bimal Kumar Sett, Sumon Sarkar. Optimal production run time and inspection errors in an imperfect production system with warranty. Journal of Industrial & Management Optimization, 2018, 14 (1) : 267-282. doi: 10.3934/jimo.2017046

[13]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[14]

Eric A. Carlen, Maria C. Carvalho, Amit Einav. Entropy production inequalities for the Kac Walk. Kinetic & Related Models, 2018, 11 (2) : 219-238. doi: 10.3934/krm.2018012

[15]

Eduardo Liz, Cristina Lois-Prados. A note on the Lasota discrete model for blood cell production. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : 701-713. doi: 10.3934/dcdsb.2019262

[16]

P. Bai, H.T. Banks, S. Dediu, A.Y. Govan, M. Last, A.L. Lloyd, H.K. Nguyen, M.S. Olufsen, G. Rempala, B.D. Slenning. Stochastic and deterministic models for agricultural production networks. Mathematical Biosciences & Engineering, 2007, 4 (3) : 373-402. doi: 10.3934/mbe.2007.4.373

[17]

Dieter Armbruster, Michael Herty, Xinping Wang, Lindu Zhao. Integrating release and dispatch policies in production models. Networks & Heterogeneous Media, 2015, 10 (3) : 511-526. doi: 10.3934/nhm.2015.10.511

[18]

Simone Göttlich, Stephan Knapp. Semi-Markovian capacities in production network models. Discrete & Continuous Dynamical Systems - B, 2017, 22 (9) : 3235-3258. doi: 10.3934/dcdsb.2017090

[19]

Simone Göttlich, Patrick Schindler. Optimal inflow control of production systems with finite buffers. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 107-127. doi: 10.3934/dcdsb.2015.20.107

[20]

Juan Gabriel Brida, Gaston Cayssials, Oscar Córdoba Rodríguez, Martín Puchet Anyul. A dynamic extension of the classical model of production prices determination. Journal of Dynamics & Games, 2020, 7 (3) : 185-196. doi: 10.3934/jdg.2020013

 Impact Factor: 

Metrics

  • PDF downloads (73)
  • HTML views (170)
  • Cited by (0)

Other articles
by authors

[Back to Top]