doi: 10.3934/jdg.2021002

A dynamic for production economies with multiple equilibria

1. 

Universidad Autónoma de San Luis Potosí, Facultad de Economía, San Luis Potosí, 78213, México

2. 

Instituto Potosino de Investigación Científica y Tecnológica, División de Control y Sistemas Dinámicos, San Luis Potosí, 78216, México

* Corresponding author: Humberto Muñiz

Received  September 2020 Revised  December 2020 Published  January 2021

In this article, we extend to private ownership production economies, the results presented by Bergstrom, Shimomura, and Yamato (2009) on the multiplicity of equilibria for the special kind of pure-exchanges economies called Shapley-Shubik economies. Furthermore, a dynamic system that represents the changes in the distribution of the firms on the production branches is introduced. For the first purpose, we introduce a particular, but large enough, production sector to the Shapley-Shubik economies, for which a simple technique to build private-ownership economies with a multiplicity of equilibria is developed. In this context, we analyze the repercussions on the behavior of the economy when the number of possible equilibria changes due to rational decisions on the production side. For the second purpose, we assume that the rational decisions on the production side provoke a change in the distribution of the firms over the set of branches of production.

Citation: Elvio Accinelli, Humberto Muñiz. A dynamic for production economies with multiple equilibria. Journal of Dynamics & Games, doi: 10.3934/jdg.2021002
References:
[1]

E. Accinelli and E. Covarrubias, Evolution and jump in a Walrasian framework, J. Dyn. Games, 3 (2016), 279-301.  doi: 10.3934/jdg.2016015.  Google Scholar

[2]

T. C. Bergstrom, K.-I. Shimomura and T. Yamato, Simple economies with multiple equilibria, B. E. J. Theor. Econ., 9 (2009), 31pp. doi: 10.2202/1935-1704.1609.  Google Scholar

[3]

E. Dierker, Two remarks on the number of equilibria of an economy, Econometrica, 40 (1972), 951-953.  doi: 10.2307/1912091.  Google Scholar

[4]

T. Hens and B. Pilgrim, The index-theorem, in General Equilibrium Foundations of Finance, Theory and Decision Library, 33, Springer, Boston, MA, 2002. doi: 10.1007/978-1-4757-5317-2_4.  Google Scholar

[5]

T. J. Kehoe, An index theorem for general equilibrium models with production, Econometrica, 48 (1980), 1211-1232.  doi: 10.2307/1912179.  Google Scholar

[6]

T. J. Kehoe, Multiplicty of equilbria and compartive statics, Quart. J. Econom., 100 (1985), 119-147.  doi: 10.2307/1885738.  Google Scholar

[7] A. Mas-Colell, The Theory of General Economic Equilbrium. A Differential Approach, Econometric Society Monographs, 9, Cambridge University Press, Cambridge, 1989.   Google Scholar
[8] P. A. Samuelson, Foundations of Economic Analysis, Harvard University Press, Cambridge, Mass., 1947.   Google Scholar
[9]

L. Shapley and M. Shubik, An example of a trading economy with three competitive equilibria, J. Political Economy, 85 (1997), 873-875.  doi: 10.1086/260607.  Google Scholar

show all references

References:
[1]

E. Accinelli and E. Covarrubias, Evolution and jump in a Walrasian framework, J. Dyn. Games, 3 (2016), 279-301.  doi: 10.3934/jdg.2016015.  Google Scholar

[2]

T. C. Bergstrom, K.-I. Shimomura and T. Yamato, Simple economies with multiple equilibria, B. E. J. Theor. Econ., 9 (2009), 31pp. doi: 10.2202/1935-1704.1609.  Google Scholar

[3]

E. Dierker, Two remarks on the number of equilibria of an economy, Econometrica, 40 (1972), 951-953.  doi: 10.2307/1912091.  Google Scholar

[4]

T. Hens and B. Pilgrim, The index-theorem, in General Equilibrium Foundations of Finance, Theory and Decision Library, 33, Springer, Boston, MA, 2002. doi: 10.1007/978-1-4757-5317-2_4.  Google Scholar

[5]

T. J. Kehoe, An index theorem for general equilibrium models with production, Econometrica, 48 (1980), 1211-1232.  doi: 10.2307/1912179.  Google Scholar

[6]

T. J. Kehoe, Multiplicty of equilbria and compartive statics, Quart. J. Econom., 100 (1985), 119-147.  doi: 10.2307/1885738.  Google Scholar

[7] A. Mas-Colell, The Theory of General Economic Equilbrium. A Differential Approach, Econometric Society Monographs, 9, Cambridge University Press, Cambridge, 1989.   Google Scholar
[8] P. A. Samuelson, Foundations of Economic Analysis, Harvard University Press, Cambridge, Mass., 1947.   Google Scholar
[9]

L. Shapley and M. Shubik, An example of a trading economy with three competitive equilibria, J. Political Economy, 85 (1997), 873-875.  doi: 10.1086/260607.  Google Scholar

Figure 1.  Example 1: $ \omega=\left((5,2),(2,3)\right) $, $ f(x)=5.5x-\dfrac{1}{2}x^2 $, equilibria prices at $ p_1=1/2 $, $ p_2=1 $, $ p_3=2 $
Figure 2.  Example 2: $ r = 7/9 $ equilibrium price at $ p_1 = 0.5 $ is singular
Figure 3.  Example 4: equilibria prices at $ p\approx 0.154648, $ $ p=1 $ and $ p=6.194385 $
Figure 4.  Example 5: equilibria prices at $ p_1\approx 0.1792472498915, $ $ p_2=2 $ and $ p_3\approx 2.6915745984313 $
Figure 5.  Example 6: equilibria prices at $ p_1\approx 0.125623594624, $ $ p_2=1 $ and $ p_3\approx 1.0747180810635 $. Distribution $ (10,40) $
Figure 6.  Example 6: equilibria prices at $ p_1\approx 0.17025278062395, $ $ p_2 \approx 0.6155470462368 $ and $ p_3\approx 1.5223658675626 $. Distribution $ (11,39) $
Figure 7.  Example 7: Blue line represents the demand function $ x_2^1(p) = \phi_1(p^{-1}) $, red line represent right hand side of equation 26. Distribution $ (12,38) $
Figure 8.  Example 7: Blue line represents the demand function $ x_2^1(p)=\phi_1(p^{-1}) $, red line represent right hand side of equation 26. Distribution $ (14,36) $
Figure 9.  Profit analysis example 7: Blue line represents $ \pi_1(p) $, while red line represent $ \pi_2(p) $
Figure 10.  Profit table for example 7
Figure 11.  Utility table for example 7
[1]

Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319

[2]

Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021011

[3]

Yanjun He, Wei Zeng, Minghui Yu, Hongtao Zhou, Delie Ming. Incentives for production capacity improvement in construction supplier development. Journal of Industrial & Management Optimization, 2021, 17 (1) : 409-426. doi: 10.3934/jimo.2019118

[4]

Pan Zheng. Asymptotic stability in a chemotaxis-competition system with indirect signal production. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1207-1223. doi: 10.3934/dcds.2020315

[5]

Gheorghe Craciun, Jiaxin Jin, Casian Pantea, Adrian Tudorascu. Convergence to the complex balanced equilibrium for some chemical reaction-diffusion systems with boundary equilibria. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1305-1335. doi: 10.3934/dcdsb.2020164

[6]

Tien-Yu Lin, Bhaba R. Sarker, Chien-Jui Lin. An optimal setup cost reduction and lot size for economic production quantity model with imperfect quality and quantity discounts. Journal of Industrial & Management Optimization, 2021, 17 (1) : 467-484. doi: 10.3934/jimo.2020043

[7]

Lan Luo, Zhe Zhang, Yong Yin. Simulated annealing and genetic algorithm based method for a bi-level seru loading problem with worker assignment in seru production systems. Journal of Industrial & Management Optimization, 2021, 17 (2) : 779-803. doi: 10.3934/jimo.2019134

[8]

Robert Stephen Cantrell, King-Yeung Lam. Competitive exclusion in phytoplankton communities in a eutrophic water column. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020361

[9]

Sumit Kumar Debnath, Pantelimon Stǎnicǎ, Nibedita Kundu, Tanmay Choudhury. Secure and efficient multiparty private set intersection cardinality. Advances in Mathematics of Communications, 2021, 15 (2) : 365-386. doi: 10.3934/amc.2020071

[10]

Manuel Friedrich, Martin Kružík, Ulisse Stefanelli. Equilibrium of immersed hyperelastic solids. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021003

[11]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[12]

Andreas Koutsogiannis. Multiple ergodic averages for tempered functions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1177-1205. doi: 10.3934/dcds.2020314

[13]

Wenqin Zhang, Zhengchun Zhou, Udaya Parampalli, Vladimir Sidorenko. Capacity-achieving private information retrieval scheme with a smaller sub-packetization. Advances in Mathematics of Communications, 2021, 15 (2) : 347-363. doi: 10.3934/amc.2020070

[14]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[15]

Gang Luo, Qingzhi Yang. The point-wise convergence of shifted symmetric higher order power method. Journal of Industrial & Management Optimization, 2021, 17 (1) : 357-368. doi: 10.3934/jimo.2019115

[16]

Pablo D. Carrasco, Túlio Vales. A symmetric Random Walk defined by the time-one map of a geodesic flow. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020390

[17]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

[18]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[19]

Jing Qin, Shuang Li, Deanna Needell, Anna Ma, Rachel Grotheer, Chenxi Huang, Natalie Durgin. Stochastic greedy algorithms for multiple measurement vectors. Inverse Problems & Imaging, 2021, 15 (1) : 79-107. doi: 10.3934/ipi.2020066

[20]

Jan Březina, Eduard Feireisl, Antonín Novotný. On convergence to equilibria of flows of compressible viscous fluids under in/out–flux boundary conditions. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021009

 Impact Factor: 

Metrics

  • PDF downloads (25)
  • HTML views (44)
  • Cited by (0)

Other articles
by authors

[Back to Top]