
- Previous Article
- JDG Home
- This Issue
-
Next Article
A note on the lattice structure for matching markets via linear programming
A dynamic for production economies with multiple equilibria
1. | Universidad Autónoma de San Luis Potosí, Facultad de Economía, San Luis Potosí, 78213, México |
2. | Instituto Potosino de Investigación Científica y Tecnológica, División de Control y Sistemas Dinámicos, San Luis Potosí, 78216, México |
In this article, we extend to private ownership production economies, the results presented by Bergstrom, Shimomura, and Yamato (2009) on the multiplicity of equilibria for the special kind of pure-exchanges economies called Shapley-Shubik economies. Furthermore, a dynamic system that represents the changes in the distribution of the firms on the production branches is introduced. For the first purpose, we introduce a particular, but large enough, production sector to the Shapley-Shubik economies, for which a simple technique to build private-ownership economies with a multiplicity of equilibria is developed. In this context, we analyze the repercussions on the behavior of the economy when the number of possible equilibria changes due to rational decisions on the production side. For the second purpose, we assume that the rational decisions on the production side provoke a change in the distribution of the firms over the set of branches of production.
References:
[1] |
E. Accinelli and E. Covarrubias,
Evolution and jump in a Walrasian framework, J. Dyn. Games, 3 (2016), 279-301.
doi: 10.3934/jdg.2016015. |
[2] |
T. C. Bergstrom, K.-I. Shimomura and T. Yamato, Simple economies with multiple equilibria, B. E. J. Theor. Econ., 9 (2009), 31pp.
doi: 10.2202/1935-1704.1609. |
[3] |
E. Dierker,
Two remarks on the number of equilibria of an economy, Econometrica, 40 (1972), 951-953.
doi: 10.2307/1912091. |
[4] |
T. Hens and B. Pilgrim, The index-theorem, in General Equilibrium Foundations of Finance, Theory and Decision Library, 33, Springer, Boston, MA, 2002.
doi: 10.1007/978-1-4757-5317-2_4. |
[5] |
T. J. Kehoe,
An index theorem for general equilibrium models with production, Econometrica, 48 (1980), 1211-1232.
doi: 10.2307/1912179. |
[6] |
T. J. Kehoe,
Multiplicty of equilbria and compartive statics, Quart. J. Econom., 100 (1985), 119-147.
doi: 10.2307/1885738. |
[7] |
A. Mas-Colell, The Theory of General Economic Equilbrium. A Differential Approach, Econometric Society Monographs, 9, Cambridge University Press, Cambridge, 1989.
![]() ![]() |
[8] |
P. A. Samuelson, Foundations of Economic Analysis, Harvard University Press, Cambridge, Mass., 1947.
![]() ![]() |
[9] |
L. Shapley and M. Shubik,
An example of a trading economy with three competitive equilibria, J. Political Economy, 85 (1997), 873-875.
doi: 10.1086/260607. |
show all references
References:
[1] |
E. Accinelli and E. Covarrubias,
Evolution and jump in a Walrasian framework, J. Dyn. Games, 3 (2016), 279-301.
doi: 10.3934/jdg.2016015. |
[2] |
T. C. Bergstrom, K.-I. Shimomura and T. Yamato, Simple economies with multiple equilibria, B. E. J. Theor. Econ., 9 (2009), 31pp.
doi: 10.2202/1935-1704.1609. |
[3] |
E. Dierker,
Two remarks on the number of equilibria of an economy, Econometrica, 40 (1972), 951-953.
doi: 10.2307/1912091. |
[4] |
T. Hens and B. Pilgrim, The index-theorem, in General Equilibrium Foundations of Finance, Theory and Decision Library, 33, Springer, Boston, MA, 2002.
doi: 10.1007/978-1-4757-5317-2_4. |
[5] |
T. J. Kehoe,
An index theorem for general equilibrium models with production, Econometrica, 48 (1980), 1211-1232.
doi: 10.2307/1912179. |
[6] |
T. J. Kehoe,
Multiplicty of equilbria and compartive statics, Quart. J. Econom., 100 (1985), 119-147.
doi: 10.2307/1885738. |
[7] |
A. Mas-Colell, The Theory of General Economic Equilbrium. A Differential Approach, Econometric Society Monographs, 9, Cambridge University Press, Cambridge, 1989.
![]() ![]() |
[8] |
P. A. Samuelson, Foundations of Economic Analysis, Harvard University Press, Cambridge, Mass., 1947.
![]() ![]() |
[9] |
L. Shapley and M. Shubik,
An example of a trading economy with three competitive equilibria, J. Political Economy, 85 (1997), 873-875.
doi: 10.1086/260607. |









[1] |
Maolin Cheng, Zhun Cheng. A novel simultaneous grey model parameter optimization method and its application to predicting private car ownership and transportation economy. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022081 |
[2] |
Jingzhen Liu, Ka-Fai Cedric Yiu, Tak Kuen Siu, Wai-Ki Ching. Optimal insurance in a changing economy. Mathematical Control and Related Fields, 2014, 4 (2) : 187-202. doi: 10.3934/mcrf.2014.4.187 |
[3] |
M. D. Troutt, S. H. Hou, W. K. Pang. Multiple workshift options in aggregrate production Multiple workshift options in aggregrate production. Journal of Industrial and Management Optimization, 2006, 2 (4) : 387-398. doi: 10.3934/jimo.2006.2.387 |
[4] |
Bo Wang, Jiguang Bao. Mirror symmetry for a Hessian over-determined problem and its generalization. Communications on Pure and Applied Analysis, 2014, 13 (6) : 2305-2316. doi: 10.3934/cpaa.2014.13.2305 |
[5] |
Marzia Bisi, Giampiero Spiga. A Boltzmann-type model for market economy and its continuous trading limit. Kinetic and Related Models, 2010, 3 (2) : 223-239. doi: 10.3934/krm.2010.3.223 |
[6] |
Nicola Bellomo, Sarah De Nigris, Damián Knopoff, Matteo Morini, Pietro Terna. Swarms dynamics approach to behavioral economy: Theoretical tools and price sequences. Networks and Heterogeneous Media, 2020, 15 (3) : 353-368. doi: 10.3934/nhm.2020022 |
[7] |
Lou Caccetta, Elham Mardaneh. Joint pricing and production planning for fixed priced multiple products with backorders. Journal of Industrial and Management Optimization, 2010, 6 (1) : 123-147. doi: 10.3934/jimo.2010.6.123 |
[8] |
Silvia Caprino, Guido Cavallaro, Carlo Marchioro. A Vlasov-Poisson plasma with unbounded mass and velocities confined in a cylinder by a magnetic mirror. Kinetic and Related Models, 2016, 9 (4) : 657-686. doi: 10.3934/krm.2016011 |
[9] |
Katherine A. Kime. Palindromic control and mirror symmetries in finite difference discretizations of 1-D Schrödinger equations. Discrete and Continuous Dynamical Systems - B, 2018, 23 (4) : 1601-1621. doi: 10.3934/dcdsb.2018063 |
[10] |
Ruofeng Rao, Shouming Zhong. Input-to-state stability and no-inputs stabilization of delayed feedback chaotic financial system involved in open and closed economy. Discrete and Continuous Dynamical Systems - S, 2021, 14 (4) : 1375-1393. doi: 10.3934/dcdss.2020280 |
[11] |
Chongyang Liu, Meijia Han. Time-delay optimal control of a fed-batch production involving multiple feeds. Discrete and Continuous Dynamical Systems - S, 2020, 13 (6) : 1697-1709. doi: 10.3934/dcdss.2020099 |
[12] |
Timothy Chumley, Renato Feres. Entropy production in random billiards. Discrete and Continuous Dynamical Systems, 2021, 41 (3) : 1319-1346. doi: 10.3934/dcds.2020319 |
[13] |
Biswajit Sarkar, Bimal Kumar Sett, Sumon Sarkar. Optimal production run time and inspection errors in an imperfect production system with warranty. Journal of Industrial and Management Optimization, 2018, 14 (1) : 267-282. doi: 10.3934/jimo.2017046 |
[14] |
Eric A. Carlen, Maria C. Carvalho, Amit Einav. Entropy production inequalities for the Kac Walk. Kinetic and Related Models, 2018, 11 (2) : 219-238. doi: 10.3934/krm.2018012 |
[15] |
Jian-Xin Guo, Xing-Long Qu. Robust control in green production management. Journal of Industrial and Management Optimization, 2022, 18 (2) : 1115-1132. doi: 10.3934/jimo.2021011 |
[16] |
Dragos-Patru Covei, Elena Cristina Canepa, Traian A. Pirvu. Stochastic production planning with regime switching. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022013 |
[17] |
P. Daniele, S. Giuffrè, S. Pia. Competitive financial equilibrium problems with policy interventions. Journal of Industrial and Management Optimization, 2005, 1 (1) : 39-52. doi: 10.3934/jimo.2005.1.39 |
[18] |
Eduardo Liz, Cristina Lois-Prados. A note on the Lasota discrete model for blood cell production. Discrete and Continuous Dynamical Systems - B, 2020, 25 (2) : 701-713. doi: 10.3934/dcdsb.2019262 |
[19] |
P. Bai, H.T. Banks, S. Dediu, A.Y. Govan, M. Last, A.L. Lloyd, H.K. Nguyen, M.S. Olufsen, G. Rempala, B.D. Slenning. Stochastic and deterministic models for agricultural production networks. Mathematical Biosciences & Engineering, 2007, 4 (3) : 373-402. doi: 10.3934/mbe.2007.4.373 |
[20] |
Dieter Armbruster, Michael Herty, Xinping Wang, Lindu Zhao. Integrating release and dispatch policies in production models. Networks and Heterogeneous Media, 2015, 10 (3) : 511-526. doi: 10.3934/nhm.2015.10.511 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]