doi: 10.3934/jdg.2021009

A zero sum differential game with correlated informations on the initial position. A case with a continuum of initial positions

Univ Brest, Laboratoire de Mathématiques de Bretagne Atlantique, CNRS-UMR 6205, 6, avenue Victor Le Gorgeu, CS 93837, 29238 Brest cedex 3, France

Received  June 2020 Published  March 2021

We study a two player zero sum game where the initial position $ z_0 $ is not communicated to any player. The initial position is a function of a couple $ (x_0,y_0) $ where $ x_0 $ is communicated to player Ⅰ while $ y_0 $ is communicated to player Ⅱ. The couple $ (x_0,y_0) $ is chosen according to a probability measure $ dm(x,y) = h(x,y) d\mu(x) d\nu(y) $. We show that the game has a value and, under additional regularity assumptions, that the value is a solution of Hamilton Jacobi Isaacs equation in a dual sense.

Citation: Chloé Jimenez. A zero sum differential game with correlated informations on the initial position. A case with a continuum of initial positions. Journal of Dynamics & Games, doi: 10.3934/jdg.2021009
References:
[1]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces. Applications to PDEs and Optimization, MPS/SIAM Series on Optimization, 6. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia, PA, 2006.  Google Scholar

[2]

R. BuckdahnM. QuincampoixC. Rainer and Y. Xu, Differential games with asymmetric information and without Isaacs' condition, Internat. J. Game Theory, 45 (2016), 795-816.  doi: 10.1007/s00182-015-0482-x.  Google Scholar

[3]

P. Cardaliaguet, Introduction to Differential Games, lecture notes, 2010. Available from: https://www.ceremade.dauphine.fr/ cardaliaguet/CoursJeuxDiff.pdf. Google Scholar

[4]

P. Cardaliaguet and M. Quincampoix, Deterministic differential games under probability knowledge of initial condition, Int. Game Theory Rev. 10, (2008), 1–16. doi: 10.1142/S021919890800173X.  Google Scholar

[5]

P. Cardaliaguet, Differential games with asymmetric information, SIAM J. Control Optim., 46 (2007), 816-838.  doi: 10.1137/060654396.  Google Scholar

[6]

P. Cardaliaguet, A double obstacle problem arising in differential game theory, J. Math. Anal. Appl., 360 (2009), 95-107.  doi: 10.1016/j.jmaa.2009.06.041.  Google Scholar

[7]

P. CardaliaguetC. Jimenez and M. Quincampoix, Pure and random strategies in differential game with incomplete informations, Journal of Dynamics and Games, 1 (2014), 363-375.  doi: 10.3934/jdg.2014.1.363.  Google Scholar

[8]

I. Ekeland, On the variational principle, Journal of Math. Anal. and Appl., 47 (1974), 324-353.  doi: 10.1016/0022-247X(74)90025-0.  Google Scholar

[9]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Studies in Mathematics and its Applications, Vol. 1. North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1976.  Google Scholar

[10]

F. Gensbittel and C. Rainer, A probabilistic representation for the value of zero-sum differential games with incomplete information on both sides, SIAM J. Control Optim., 55, (2017), 693–723. doi: 10.1137/16M106217X.  Google Scholar

[11]

F. Gensbittel and C. Rainer, A two player zerosum game where only one player observes a Brownian motion, Dynamic Games and Applications, 8, (2018), 280–314. doi: 10.1007/s13235-017-0219-5.  Google Scholar

[12]

L. G. Hanin, An extension of the Kantorovich norm. Monge Ampère equation: applications to geometry and optimization, Contemp. Math., 226 (1999), 113-130.  doi: 10.1090/conm/226/03238.  Google Scholar

[13]

C. Jimenez and M. Quincampoix, Hamilton Jacobi Isaacs equations for differential games with asymmetric information on probabilistic initial condition, J. Math. Anal. Appl., 457 (2018), 1422-1451.  doi: 10.1016/j.jmaa.2017.08.012.  Google Scholar

[14]

C. JimenezM. Quincampoix and Y. Xu, Differential games with incomplete information on a continuum of initial positions and without Isaacs condition, Dyn. Games Appl., 6 (2016), 82-96.  doi: 10.1007/s13235-014-0134-y.  Google Scholar

[15]

M. Oliu-Barton, Differential games with asymmetric and correlated information, Dyn. Games Appl., 5 (2015), 378-396.  doi: 10.1007/s13235-014-0131-1.  Google Scholar

[16]

A. Pratelli, On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation, Ann. Inst. H. Poincaré, Probab. Statist., 43 (2007), 1-13.  doi: 10.1016/j.anihpb.2005.12.001.  Google Scholar

[17]

F. Santambrogio, Optimal Transport for Applied Mathematicians, Calculus of variations, PDEs, and modeling. Progress in Nonlinear Differential Equations and their Applications, 87. Birkhäuser/Springer, Cham, 2015. doi: 10.1007/978-3-319-20828-2.  Google Scholar

[18]

C. Villani, Topics in Optimal Transportation, Graduate studies in Mathematics, Vol.58, AMS, 2003. doi: 10.1090/gsm/058.  Google Scholar

[19]

X. Wu, Existence of value for differential games with incomplete information and signals on initial states and payoffs, J. Math. Anal. Appl., 446 (2017), 1196-1218.  doi: 10.1016/j.jmaa.2016.09.035.  Google Scholar

show all references

References:
[1]

H. Attouch, G. Buttazzo and G. Michaille, Variational Analysis in Sobolev and BV Spaces. Applications to PDEs and Optimization, MPS/SIAM Series on Optimization, 6. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia, PA, 2006.  Google Scholar

[2]

R. BuckdahnM. QuincampoixC. Rainer and Y. Xu, Differential games with asymmetric information and without Isaacs' condition, Internat. J. Game Theory, 45 (2016), 795-816.  doi: 10.1007/s00182-015-0482-x.  Google Scholar

[3]

P. Cardaliaguet, Introduction to Differential Games, lecture notes, 2010. Available from: https://www.ceremade.dauphine.fr/ cardaliaguet/CoursJeuxDiff.pdf. Google Scholar

[4]

P. Cardaliaguet and M. Quincampoix, Deterministic differential games under probability knowledge of initial condition, Int. Game Theory Rev. 10, (2008), 1–16. doi: 10.1142/S021919890800173X.  Google Scholar

[5]

P. Cardaliaguet, Differential games with asymmetric information, SIAM J. Control Optim., 46 (2007), 816-838.  doi: 10.1137/060654396.  Google Scholar

[6]

P. Cardaliaguet, A double obstacle problem arising in differential game theory, J. Math. Anal. Appl., 360 (2009), 95-107.  doi: 10.1016/j.jmaa.2009.06.041.  Google Scholar

[7]

P. CardaliaguetC. Jimenez and M. Quincampoix, Pure and random strategies in differential game with incomplete informations, Journal of Dynamics and Games, 1 (2014), 363-375.  doi: 10.3934/jdg.2014.1.363.  Google Scholar

[8]

I. Ekeland, On the variational principle, Journal of Math. Anal. and Appl., 47 (1974), 324-353.  doi: 10.1016/0022-247X(74)90025-0.  Google Scholar

[9]

I. Ekeland and R. Temam, Convex Analysis and Variational Problems, Studies in Mathematics and its Applications, Vol. 1. North-Holland Publishing Co., Amsterdam-Oxford; American Elsevier Publishing Co., Inc., New York, 1976.  Google Scholar

[10]

F. Gensbittel and C. Rainer, A probabilistic representation for the value of zero-sum differential games with incomplete information on both sides, SIAM J. Control Optim., 55, (2017), 693–723. doi: 10.1137/16M106217X.  Google Scholar

[11]

F. Gensbittel and C. Rainer, A two player zerosum game where only one player observes a Brownian motion, Dynamic Games and Applications, 8, (2018), 280–314. doi: 10.1007/s13235-017-0219-5.  Google Scholar

[12]

L. G. Hanin, An extension of the Kantorovich norm. Monge Ampère equation: applications to geometry and optimization, Contemp. Math., 226 (1999), 113-130.  doi: 10.1090/conm/226/03238.  Google Scholar

[13]

C. Jimenez and M. Quincampoix, Hamilton Jacobi Isaacs equations for differential games with asymmetric information on probabilistic initial condition, J. Math. Anal. Appl., 457 (2018), 1422-1451.  doi: 10.1016/j.jmaa.2017.08.012.  Google Scholar

[14]

C. JimenezM. Quincampoix and Y. Xu, Differential games with incomplete information on a continuum of initial positions and without Isaacs condition, Dyn. Games Appl., 6 (2016), 82-96.  doi: 10.1007/s13235-014-0134-y.  Google Scholar

[15]

M. Oliu-Barton, Differential games with asymmetric and correlated information, Dyn. Games Appl., 5 (2015), 378-396.  doi: 10.1007/s13235-014-0131-1.  Google Scholar

[16]

A. Pratelli, On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation, Ann. Inst. H. Poincaré, Probab. Statist., 43 (2007), 1-13.  doi: 10.1016/j.anihpb.2005.12.001.  Google Scholar

[17]

F. Santambrogio, Optimal Transport for Applied Mathematicians, Calculus of variations, PDEs, and modeling. Progress in Nonlinear Differential Equations and their Applications, 87. Birkhäuser/Springer, Cham, 2015. doi: 10.1007/978-3-319-20828-2.  Google Scholar

[18]

C. Villani, Topics in Optimal Transportation, Graduate studies in Mathematics, Vol.58, AMS, 2003. doi: 10.1090/gsm/058.  Google Scholar

[19]

X. Wu, Existence of value for differential games with incomplete information and signals on initial states and payoffs, J. Math. Anal. Appl., 446 (2017), 1196-1218.  doi: 10.1016/j.jmaa.2016.09.035.  Google Scholar

[1]

Jonathan Zinsl. The gradient flow of a generalized Fisher information functional with respect to modified Wasserstein distances. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 919-933. doi: 10.3934/dcdss.2017047

[2]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[3]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[4]

Liliana Trejo-Valencia, Edgardo Ugalde. Projective distance and $g$-measures. Discrete & Continuous Dynamical Systems - B, 2015, 20 (10) : 3565-3579. doi: 10.3934/dcdsb.2015.20.3565

[5]

Xing Huang, Feng-Yu Wang. Mckean-Vlasov sdes with drifts discontinuous under wasserstein distance. Discrete & Continuous Dynamical Systems, 2021, 41 (4) : 1667-1679. doi: 10.3934/dcds.2020336

[6]

Hermen Jan Hupkes, Emmanuelle Augeraud-Véron. Well-posedness of initial value problems for functional differential and algebraic equations of mixed type. Discrete & Continuous Dynamical Systems, 2011, 30 (3) : 737-765. doi: 10.3934/dcds.2011.30.737

[7]

Zalman Balanov, Meymanat Farzamirad, Wieslaw Krawcewicz, Haibo Ruan. Applied equivariant degree. part II: Symmetric Hopf bifurcations of functional differential equations. Discrete & Continuous Dynamical Systems, 2006, 16 (4) : 923-960. doi: 10.3934/dcds.2006.16.923

[8]

Zhihua Liu, Pierre Magal. Functional differential equation with infinite delay in a space of exponentially bounded and uniformly continuous functions. Discrete & Continuous Dynamical Systems - B, 2020, 25 (6) : 2271-2292. doi: 10.3934/dcdsb.2019227

[9]

Astridh Boccabella, Roberto Natalini, Lorenzo Pareschi. On a continuous mixed strategies model for evolutionary game theory. Kinetic & Related Models, 2011, 4 (1) : 187-213. doi: 10.3934/krm.2011.4.187

[10]

Raz Kupferman, Asaf Shachar. On strain measures and the geodesic distance to $SO_n$ in the general linear group. Journal of Geometric Mechanics, 2016, 8 (4) : 437-460. doi: 10.3934/jgm.2016015

[11]

Jide Sun, Lili Wang. The interaction between BIM's promotion and interest game under information asymmetry. Journal of Industrial & Management Optimization, 2015, 11 (4) : 1301-1319. doi: 10.3934/jimo.2015.11.1301

[12]

Antonio Azzollini. On a functional satisfying a weak Palais-Smale condition. Discrete & Continuous Dynamical Systems, 2014, 34 (5) : 1829-1840. doi: 10.3934/dcds.2014.34.1829

[13]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

[14]

Pierre Cardaliaguet, Chloé Jimenez, Marc Quincampoix. Pure and Random strategies in differential game with incomplete informations. Journal of Dynamics & Games, 2014, 1 (3) : 363-375. doi: 10.3934/jdg.2014.1.363

[15]

Giuseppe Savaré. Self-improvement of the Bakry-Émery condition and Wasserstein contraction of the heat flow in $RCD (K, \infty)$ metric measure spaces. Discrete & Continuous Dynamical Systems, 2014, 34 (4) : 1641-1661. doi: 10.3934/dcds.2014.34.1641

[16]

Shui-Nee Chow, Xiaojing Ye, Hongyuan Zha, Haomin Zhou. Influence prediction for continuous-time information propagation on networks. Networks & Heterogeneous Media, 2018, 13 (4) : 567-583. doi: 10.3934/nhm.2018026

[17]

Kirill D. Cherednichenko, Alexander V. Kiselev, Luis O. Silva. Functional model for extensions of symmetric operators and applications to scattering theory. Networks & Heterogeneous Media, 2018, 13 (2) : 191-215. doi: 10.3934/nhm.2018009

[18]

A. Azzollini. Erratum to: "On a functional satisfying a weak Palais-Smale condition". Discrete & Continuous Dynamical Systems, 2014, 34 (11) : 4987-4987. doi: 10.3934/dcds.2014.34.4987

[19]

Zhongbao Zhou, Yanfei Bai, Helu Xiao, Xu Chen. A non-zero-sum reinsurance-investment game with delay and asymmetric information. Journal of Industrial & Management Optimization, 2021, 17 (2) : 909-936. doi: 10.3934/jimo.2020004

[20]

Leandro Cioletti, Artur O. Lopes, Manuel Stadlbauer. Ruelle operator for continuous potentials and DLR-Gibbs measures. Discrete & Continuous Dynamical Systems, 2020, 40 (8) : 4625-4652. doi: 10.3934/dcds.2020195

 Impact Factor: 

Metrics

  • PDF downloads (9)
  • HTML views (54)
  • Cited by (0)

Other articles
by authors

[Back to Top]