• Previous Article
    "Test two, choose the better" leads to high cooperation in the Centipede game
  • JDG Home
  • This Issue
  • Next Article
    Origin-to-destination network flow with path preferences and velocity controls: A mean field game-like approach
doi: 10.3934/jdg.2021019

Game value for a pursuit-evasion differential game problem in a Hilbert space

1. 

Department of Mathematical Sciences, Bayero University, Kano, Nigeria

2. 

Federal University, Gashua, Yobe State, Nigeria

* Corresponding author: Abbas Ja'afaru Badakaya

Received  December 2020 Revised  April 2021 Published  May 2021

We consider a pursuit-evasion differential game problem with countable number pursuers and one evader in the Hilbert space $ l_{2}. $ Players' dynamic equations described by certain $ n^{th} $ order ordinary differential equations. Control functions of the players subject to integral constraints. The goal of the pursuers is to minimize the distance to the evader and that of the evader is the opposite. The stoppage time of the game is fixed and the game payoff is the distance between evader and closest pursuer when the game is stopped. We study this game problem and find the value of the game. In addition to this, we construct players' optimal strategies.

Citation: Abbas Ja'afaru Badakaya, Aminu Sulaiman Halliru, Jamilu Adamu. Game value for a pursuit-evasion differential game problem in a Hilbert space. Journal of Dynamics & Games, doi: 10.3934/jdg.2021019
References:
[1]

J. AdamuK. MuangchooA. J. Badakaya and J. Rilwan, On pursuit-evasion differential game problem in a Hilbert space, AIMS Math., 5 (2020), 7467-7479.  doi: 10.3934/math.2020478.  Google Scholar

[2]

A. J. Badakaya, Value of a differential game problem with multiple players in a certain Hilbert space, J. Nigerian Math. Soc., 36 (2017), 287-305.   Google Scholar

[3]

E. Bakolas and P. Tsiotras, Relay pursuit of a maneuvering target using dynamic Voronoi diagrams, Automatica J. IFAC, 48 (2012), 2213-2220.  doi: 10.1016/j.automatica.2012.06.003.  Google Scholar

[4]

M. ChenZ. Zhou and C. J. Tomlin, Multiplayer reach-avoid games via pairwise outcomes, IEEE Trans. Automat. Control, 62 (2017), 1451-1457.  doi: 10.1109/TAC.2016.2577619.  Google Scholar

[5]

G. I. Ibragimov, On a game of optimal pursuit of one evader by several pursuers, J. Appl. Math. Mech., 62 (1998), 187-192.  doi: 10.1016/S0021-8928(98)00024-0.  Google Scholar

[6]

G. I. Ibragimov, Optimal pursuit of an evader by countably many pursuers, Differ. Equ., 41 (2005), 627-635.  doi: 10.1007/s10625-005-0198-y.  Google Scholar

[7]

G. IbragimovN. Abd RasidA. Kuchkarov and F. Ismail, Multi pursuer differential game of optimal approach with integral constraints on control of players, Taiwanese J. Math., 19 (2015), 963-976.  doi: 10.11650/tjm.19.2015.2288.  Google Scholar

[8]

G. IbragimovI. A. AliasU. Waziri and A. B. Ja'afaru, Differential game of optimal pursuit for an infinite system of differential equations, Bull. Malays. Math. Sci. Soc., 42 (2019), 391-403.  doi: 10.1007/s40840-017-0581-x.  Google Scholar

[9]

G. Ibragimov and N. A. Hussin, A Pursuit-evasion differential game with many pursuers and one evader, Malaysian J. Math. Sci., 4 (2010), 183-194.   Google Scholar

[10]

G. I. Ibragimov and A. S. Kuchkarov, Fixed duration pursuit-evasion differential game with integral constraints, J. Physics: Conference Series, 435 (2017). doi: 10.1088/1742-6596/435/1/012017.  Google Scholar

[11]

G. I. Ibragimov and M. Salimi, Pursuit-evasion differential game with many inertial players, Math. Probl. Eng., 2009 (2009), 15pp. doi: 10.1155/2009/653723.  Google Scholar

[12]

A. B. Ja'afaru and G. I. Ibragimov, On some pursuit and evasion differential game problems for an infinite number of first-order differential equations, J. Appl. Math., 2012 (2012), 13pp. doi: 10.1155/2012/717124.  Google Scholar

[13]

A. S. KuchkarovG. I. Ibragimov and M. Khakestari, On a linear differential game of optimal approach of many pursuers with one evader, J. Dyn. Control Syst., 19 (2013), 1-15.  doi: 10.1007/s10883-013-9161-z.  Google Scholar

[14]

A. Y. Levchenkov and A. G. Pashkov, Differential game of optimal approach of two inertial pursuers to a noninertial evader, J. Optim. Theory Appl., 65 (1990), 501-518.  doi: 10.1007/BF00939563.  Google Scholar

[15]

L. A. Petrosyan, Differential pursuit games, Izdat. Leningrad. Univ., Leningrad, 1977,222pp.  Google Scholar

[16]

M. V. Ramana and M. Kothari, Pursuit-evasion games of high speed evader, J. Intell. Robot. Syst., 85 (2017), 293-306.  doi: 10.1007/s10846-016-0379-3.  Google Scholar

[17]

M. V. Ramana and M. Kothari, Pursuit strategy to capture high-speed evaders using multiple pursuers, J. Guidance Control Dyn., 49 (2017), 139-149.  doi: 10.2514/1.G000584.  Google Scholar

[18]

M. Salimi and M. Ferrara, Differential game of optimal pursuit of one evader by many pursuers, Internat. J. Game Theory, 48 (2019), 481-490.  doi: 10.1007/s00182-018-0638-6.  Google Scholar

[19]

N. SatimovB. B. Rikhsiev and A. A. Khamdamov, A pursuit problem for linear differential and discrete $n$-person games with integral constraints, Mat. Sb. (N.S.), 118(160) (1982), 456-469.   Google Scholar

[20]

A. I. Subbotin and A. G. Chentsov, Guaranteed Optimization in Control Problems, Nauka, Moscow, 1981,288pp.  Google Scholar

[21] A.-M. Wazwaz, Linear and Nonlinear Integral Equations. Mathods and Applications, Higher Education Press, Beijing; Springer, Heidelberg, 2011.  doi: 10.1007/978-3-642-21449-3.  Google Scholar

show all references

References:
[1]

J. AdamuK. MuangchooA. J. Badakaya and J. Rilwan, On pursuit-evasion differential game problem in a Hilbert space, AIMS Math., 5 (2020), 7467-7479.  doi: 10.3934/math.2020478.  Google Scholar

[2]

A. J. Badakaya, Value of a differential game problem with multiple players in a certain Hilbert space, J. Nigerian Math. Soc., 36 (2017), 287-305.   Google Scholar

[3]

E. Bakolas and P. Tsiotras, Relay pursuit of a maneuvering target using dynamic Voronoi diagrams, Automatica J. IFAC, 48 (2012), 2213-2220.  doi: 10.1016/j.automatica.2012.06.003.  Google Scholar

[4]

M. ChenZ. Zhou and C. J. Tomlin, Multiplayer reach-avoid games via pairwise outcomes, IEEE Trans. Automat. Control, 62 (2017), 1451-1457.  doi: 10.1109/TAC.2016.2577619.  Google Scholar

[5]

G. I. Ibragimov, On a game of optimal pursuit of one evader by several pursuers, J. Appl. Math. Mech., 62 (1998), 187-192.  doi: 10.1016/S0021-8928(98)00024-0.  Google Scholar

[6]

G. I. Ibragimov, Optimal pursuit of an evader by countably many pursuers, Differ. Equ., 41 (2005), 627-635.  doi: 10.1007/s10625-005-0198-y.  Google Scholar

[7]

G. IbragimovN. Abd RasidA. Kuchkarov and F. Ismail, Multi pursuer differential game of optimal approach with integral constraints on control of players, Taiwanese J. Math., 19 (2015), 963-976.  doi: 10.11650/tjm.19.2015.2288.  Google Scholar

[8]

G. IbragimovI. A. AliasU. Waziri and A. B. Ja'afaru, Differential game of optimal pursuit for an infinite system of differential equations, Bull. Malays. Math. Sci. Soc., 42 (2019), 391-403.  doi: 10.1007/s40840-017-0581-x.  Google Scholar

[9]

G. Ibragimov and N. A. Hussin, A Pursuit-evasion differential game with many pursuers and one evader, Malaysian J. Math. Sci., 4 (2010), 183-194.   Google Scholar

[10]

G. I. Ibragimov and A. S. Kuchkarov, Fixed duration pursuit-evasion differential game with integral constraints, J. Physics: Conference Series, 435 (2017). doi: 10.1088/1742-6596/435/1/012017.  Google Scholar

[11]

G. I. Ibragimov and M. Salimi, Pursuit-evasion differential game with many inertial players, Math. Probl. Eng., 2009 (2009), 15pp. doi: 10.1155/2009/653723.  Google Scholar

[12]

A. B. Ja'afaru and G. I. Ibragimov, On some pursuit and evasion differential game problems for an infinite number of first-order differential equations, J. Appl. Math., 2012 (2012), 13pp. doi: 10.1155/2012/717124.  Google Scholar

[13]

A. S. KuchkarovG. I. Ibragimov and M. Khakestari, On a linear differential game of optimal approach of many pursuers with one evader, J. Dyn. Control Syst., 19 (2013), 1-15.  doi: 10.1007/s10883-013-9161-z.  Google Scholar

[14]

A. Y. Levchenkov and A. G. Pashkov, Differential game of optimal approach of two inertial pursuers to a noninertial evader, J. Optim. Theory Appl., 65 (1990), 501-518.  doi: 10.1007/BF00939563.  Google Scholar

[15]

L. A. Petrosyan, Differential pursuit games, Izdat. Leningrad. Univ., Leningrad, 1977,222pp.  Google Scholar

[16]

M. V. Ramana and M. Kothari, Pursuit-evasion games of high speed evader, J. Intell. Robot. Syst., 85 (2017), 293-306.  doi: 10.1007/s10846-016-0379-3.  Google Scholar

[17]

M. V. Ramana and M. Kothari, Pursuit strategy to capture high-speed evaders using multiple pursuers, J. Guidance Control Dyn., 49 (2017), 139-149.  doi: 10.2514/1.G000584.  Google Scholar

[18]

M. Salimi and M. Ferrara, Differential game of optimal pursuit of one evader by many pursuers, Internat. J. Game Theory, 48 (2019), 481-490.  doi: 10.1007/s00182-018-0638-6.  Google Scholar

[19]

N. SatimovB. B. Rikhsiev and A. A. Khamdamov, A pursuit problem for linear differential and discrete $n$-person games with integral constraints, Mat. Sb. (N.S.), 118(160) (1982), 456-469.   Google Scholar

[20]

A. I. Subbotin and A. G. Chentsov, Guaranteed Optimization in Control Problems, Nauka, Moscow, 1981,288pp.  Google Scholar

[21] A.-M. Wazwaz, Linear and Nonlinear Integral Equations. Mathods and Applications, Higher Education Press, Beijing; Springer, Heidelberg, 2011.  doi: 10.1007/978-3-642-21449-3.  Google Scholar
[1]

Onur Alp İlhan. Solvability of some partial integral equations in Hilbert space. Communications on Pure & Applied Analysis, 2008, 7 (4) : 837-844. doi: 10.3934/cpaa.2008.7.837

[2]

Onur Alp İlhan. Solvability of some volterra type integral equations in hilbert space. Conference Publications, 2007, 2007 (Special) : 28-34. doi: 10.3934/proc.2007.2007.28

[3]

David Cantala, Juan Sebastián Pereyra. Endogenous budget constraints in the assignment game. Journal of Dynamics & Games, 2015, 2 (3&4) : 207-225. doi: 10.3934/jdg.2015002

[4]

Daniel Alpay, Mihai Putinar, Victor Vinnikov. A Hilbert space approach to bounded analytic extension in the ball. Communications on Pure & Applied Analysis, 2003, 2 (2) : 139-145. doi: 10.3934/cpaa.2003.2.139

[5]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[6]

Anna Karczewska, Carlos Lizama. On stochastic fractional Volterra equations in Hilbert space. Conference Publications, 2007, 2007 (Special) : 541-550. doi: 10.3934/proc.2007.2007.541

[7]

Mahmoud M. El-Borai. On some fractional differential equations in the Hilbert space. Conference Publications, 2005, 2005 (Special) : 233-240. doi: 10.3934/proc.2005.2005.233

[8]

P. Chiranjeevi, V. Kannan, Sharan Gopal. Periodic points and periods for operators on hilbert space. Discrete & Continuous Dynamical Systems, 2013, 33 (9) : 4233-4237. doi: 10.3934/dcds.2013.33.4233

[9]

Pengyu Chen, Yongxiang Li, Xuping Zhang. On the initial value problem of fractional stochastic evolution equations in Hilbert spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1817-1840. doi: 10.3934/cpaa.2015.14.1817

[10]

Andrew E.B. Lim, John B. Moore. A path following algorithm for infinite quadratic programming on a Hilbert space. Discrete & Continuous Dynamical Systems, 1998, 4 (4) : 653-670. doi: 10.3934/dcds.1998.4.653

[11]

Matthew A. Fury. Regularization for ill-posed inhomogeneous evolution problems in a Hilbert space. Conference Publications, 2013, 2013 (special) : 259-272. doi: 10.3934/proc.2013.2013.259

[12]

Raffaele Chiappinelli. Eigenvalues of homogeneous gradient mappings in Hilbert space and the Birkoff-Kellogg theorem. Conference Publications, 2007, 2007 (Special) : 260-268. doi: 10.3934/proc.2007.2007.260

[13]

Yuan Gao, Jian-Guo Liu, Tao Luo, Yang Xiang. Revisit of the Peierls-Nabarro model for edge dislocations in Hilbert space. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3177-3207. doi: 10.3934/dcdsb.2020224

[14]

Liam Burrows, Weihong Guo, Ke Chen, Francesco Torella. Reproducible kernel Hilbert space based global and local image segmentation. Inverse Problems & Imaging, 2021, 15 (1) : 1-25. doi: 10.3934/ipi.2020048

[15]

Petr Čoupek, María J. Garrido-Atienza. Bilinear equations in Hilbert space driven by paths of low regularity. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 121-154. doi: 10.3934/dcdsb.2020230

[16]

Jingbo Dou, Ye Li. Liouville theorem for an integral system on the upper half space. Discrete & Continuous Dynamical Systems, 2015, 35 (1) : 155-171. doi: 10.3934/dcds.2015.35.155

[17]

Yonggang Zhao, Mingxin Wang. An integral equation involving Bessel potentials on half space. Communications on Pure & Applied Analysis, 2015, 14 (2) : 527-548. doi: 10.3934/cpaa.2015.14.527

[18]

Vianney Perchet, Marc Quincampoix. A differential game on Wasserstein space. Application to weak approachability with partial monitoring. Journal of Dynamics & Games, 2019, 6 (1) : 65-85. doi: 10.3934/jdg.2019005

[19]

Oleksandr Boichuk, Victor Feruk. Boundary-value problems for weakly singular integral equations. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021094

[20]

Thorsten Hohage, Mihaela Pricop. Nonlinear Tikhonov regularization in Hilbert scales for inverse boundary value problems with random noise. Inverse Problems & Imaging, 2008, 2 (2) : 271-290. doi: 10.3934/ipi.2008.2.271

 Impact Factor: 

Article outline

[Back to Top]