• Previous Article
    Analysis of communities of countries with similar dynamics of the COVID-19 pandemic evolution
  • JDG Home
  • This Issue
  • Next Article
    Explaining the definition of wholesale access prices in the Portuguese telecommunications industry
doi: 10.3934/jdg.2021020
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Zero-sum games for pure jump processes with risk-sensitive discounted cost criteria

1. 

Department of Mathematics, Indian Institute of Technology Guwahati, Guwahati, Assam - 781039, India

2. 

Department of Mathematics, Indian Institute of Science Education and Research Pune, Pune, Maharashtra - 411008, India

* Corresponding author: Chandan Pal

Received  April 2021 Revised  June 2021 Early access July 2021

In this paper we study zero-sum stochastic games for pure jump processes on a general state space with risk sensitive discounted criteria. We establish a saddle point equilibrium in Markov strategies for bounded cost function. We achieve our results by studying relevant Hamilton-Jacobi-Isaacs equations.

Citation: Chandan Pal, Somnath Pradhan. Zero-sum games for pure jump processes with risk-sensitive discounted cost criteria. Journal of Dynamics & Games, doi: 10.3934/jdg.2021020
References:
[1] R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.   Google Scholar
[2]

V. E. Beneš, Existence of optimal strategies based on specified information, for a class of stochastic decision problems, SIAM J. Control, 8 (1970), 179-188.  doi: 10.1137/0308012.  Google Scholar

[3]

K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121-126.  doi: 10.1073/pnas.38.2.121.  Google Scholar

[4]

M. K. GhoshK. S. Kumar and C. Pal, Zero-sum risk-sensitive stochastic games for continuous time Markov chains, Stoch. Anal. Appl., 34 (2016), 835-851.  doi: 10.1080/07362994.2016.1180995.  Google Scholar

[5]

M. K. Ghosh and S. Saha, Risk-sensitive control of continuous time Markov chains, Stochastics, 86 (2014), 655-675.  doi: 10.1080/17442508.2013.872644.  Google Scholar

[6]

X. Guo, Continuous-time Markov decision processes with discounted rewards: The case of Polish spaces, Math. Oper. Res., 32 (2007), 73-87.  doi: 10.1287/moor.1060.0210.  Google Scholar

[7]

X. Guo and O. Hernández-Lerma, Nonzero-sum games for continuous-time Markov chains with unbounded discounted payoffs, J. Appl. Probab., 42 (2005), 303-320.  doi: 10.1239/jap/1118777172.  Google Scholar

[8]

X. Guo and O. Hernández-Lerma, Zero-sum games for continuous-time jump Markov processes in Polish spaces: Discounted payoffs, Adv. in Appl. Probab., 39 (2007), 645-668.  doi: 10.1017/S0001867800001981.  Google Scholar

[9]

X. Guo and O. Hernández-Lerma, Zero-sum games for continuous-time Markov chains with unbounded transition and average payoff rates, J. Appl. Probab., 40 (2003), 327-345.  doi: 10.1017/S0021900200019331.  Google Scholar

[10]

X. Guo and Z.-W. Liao, Risk-sensitive discounted continuous-time Markov decision processes with unbounded rates, SIAM J. Control Optim., 57 (2019), 3857-3883.  doi: 10.1137/18M1222016.  Google Scholar

[11]

X. Guo and Y. Zhang, On risk-sensitive piecewise deterministic Markov decision processes, Appl. Math. Optim., 81 (2020), 685-710.  doi: 10.1007/s00245-018-9485-x.  Google Scholar

[12]

O. Hernández-Lerma and J. B. Lasserre, Further Topics on Discrete-Time Markov Control Processes, Applications of Mathematics (New York), 42, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-0561-6.  Google Scholar

[13]

A. S. Nowak, Notes on risk-sensitive Nash equilibria, in Advances in Dynamic Games, Ann. Internat. Soc. Dynam. Games, 7, Birkhäuser Boston, Boston, MA, 2005, 95–109. doi: 10.1007/0-8176-4429-6_5.  Google Scholar

[14]

C. Pal and S. Pradhan, Risk sensitive control of pure jump processes on a general state space, Stochastics, 91 (2019), 155-174.  doi: 10.1080/17442508.2018.1521413.  Google Scholar

[15]

K. Suresh Kumar and C. Pal, Risk-sensitive control of pure jump process on countable space with near monotone cost, Appl. Math. Optim., 68 (2013), 311-331.  doi: 10.1007/s00245-013-9208-2.  Google Scholar

[16]

K. Suresh Kumar and C. Pal, Risk-sensitive ergodic control of continuous time Markov processes with denumerable state space, Stoch. Anal. Appl., 33 (2015), 863-881.  doi: 10.1080/07362994.2015.1050674.  Google Scholar

[17]

Q. Wei, Zero-sum games for continuous-time Markov jump processes with risk-sensitive finite-horizon cost criterion, Oper. Res. Lett., 46 (2018), 69-75.  doi: 10.1016/j.orl.2017.11.008.  Google Scholar

[18]

Q. Wei and X. Chen, Stochastic games for continuous-time jump processes under finite-horizon payoff criterion, Appl. Math. Optim., 74 (2016), 273-301.  doi: 10.1007/s00245-015-9314-4.  Google Scholar

[19]

P. Whittle, Risk-Sensitive Optimal Control, Wiley-Interscience Series in Systems and Optimization, John Wiley & Sons, Ltd., Chichester, 1990.  Google Scholar

[20]

W. Zhang, Continuous-time constrained stochastic games under the discounted cost criteria, Appl. Math. Optim., 77 (2018), 275-296.  doi: 10.1007/s00245-016-9374-0.  Google Scholar

[21]

Y. Zhang, Continuous-time Markov decision processes with exponential utility, SIAM J. Control Optim., 55 (2017), 2636-2660.  doi: 10.1137/16M1086261.  Google Scholar

show all references

References:
[1] R. Bellman, Dynamic Programming, Princeton University Press, Princeton, NJ, 1957.   Google Scholar
[2]

V. E. Beneš, Existence of optimal strategies based on specified information, for a class of stochastic decision problems, SIAM J. Control, 8 (1970), 179-188.  doi: 10.1137/0308012.  Google Scholar

[3]

K. Fan, Fixed-point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci. U.S.A., 38 (1952), 121-126.  doi: 10.1073/pnas.38.2.121.  Google Scholar

[4]

M. K. GhoshK. S. Kumar and C. Pal, Zero-sum risk-sensitive stochastic games for continuous time Markov chains, Stoch. Anal. Appl., 34 (2016), 835-851.  doi: 10.1080/07362994.2016.1180995.  Google Scholar

[5]

M. K. Ghosh and S. Saha, Risk-sensitive control of continuous time Markov chains, Stochastics, 86 (2014), 655-675.  doi: 10.1080/17442508.2013.872644.  Google Scholar

[6]

X. Guo, Continuous-time Markov decision processes with discounted rewards: The case of Polish spaces, Math. Oper. Res., 32 (2007), 73-87.  doi: 10.1287/moor.1060.0210.  Google Scholar

[7]

X. Guo and O. Hernández-Lerma, Nonzero-sum games for continuous-time Markov chains with unbounded discounted payoffs, J. Appl. Probab., 42 (2005), 303-320.  doi: 10.1239/jap/1118777172.  Google Scholar

[8]

X. Guo and O. Hernández-Lerma, Zero-sum games for continuous-time jump Markov processes in Polish spaces: Discounted payoffs, Adv. in Appl. Probab., 39 (2007), 645-668.  doi: 10.1017/S0001867800001981.  Google Scholar

[9]

X. Guo and O. Hernández-Lerma, Zero-sum games for continuous-time Markov chains with unbounded transition and average payoff rates, J. Appl. Probab., 40 (2003), 327-345.  doi: 10.1017/S0021900200019331.  Google Scholar

[10]

X. Guo and Z.-W. Liao, Risk-sensitive discounted continuous-time Markov decision processes with unbounded rates, SIAM J. Control Optim., 57 (2019), 3857-3883.  doi: 10.1137/18M1222016.  Google Scholar

[11]

X. Guo and Y. Zhang, On risk-sensitive piecewise deterministic Markov decision processes, Appl. Math. Optim., 81 (2020), 685-710.  doi: 10.1007/s00245-018-9485-x.  Google Scholar

[12]

O. Hernández-Lerma and J. B. Lasserre, Further Topics on Discrete-Time Markov Control Processes, Applications of Mathematics (New York), 42, Springer-Verlag, New York, 1999. doi: 10.1007/978-1-4612-0561-6.  Google Scholar

[13]

A. S. Nowak, Notes on risk-sensitive Nash equilibria, in Advances in Dynamic Games, Ann. Internat. Soc. Dynam. Games, 7, Birkhäuser Boston, Boston, MA, 2005, 95–109. doi: 10.1007/0-8176-4429-6_5.  Google Scholar

[14]

C. Pal and S. Pradhan, Risk sensitive control of pure jump processes on a general state space, Stochastics, 91 (2019), 155-174.  doi: 10.1080/17442508.2018.1521413.  Google Scholar

[15]

K. Suresh Kumar and C. Pal, Risk-sensitive control of pure jump process on countable space with near monotone cost, Appl. Math. Optim., 68 (2013), 311-331.  doi: 10.1007/s00245-013-9208-2.  Google Scholar

[16]

K. Suresh Kumar and C. Pal, Risk-sensitive ergodic control of continuous time Markov processes with denumerable state space, Stoch. Anal. Appl., 33 (2015), 863-881.  doi: 10.1080/07362994.2015.1050674.  Google Scholar

[17]

Q. Wei, Zero-sum games for continuous-time Markov jump processes with risk-sensitive finite-horizon cost criterion, Oper. Res. Lett., 46 (2018), 69-75.  doi: 10.1016/j.orl.2017.11.008.  Google Scholar

[18]

Q. Wei and X. Chen, Stochastic games for continuous-time jump processes under finite-horizon payoff criterion, Appl. Math. Optim., 74 (2016), 273-301.  doi: 10.1007/s00245-015-9314-4.  Google Scholar

[19]

P. Whittle, Risk-Sensitive Optimal Control, Wiley-Interscience Series in Systems and Optimization, John Wiley & Sons, Ltd., Chichester, 1990.  Google Scholar

[20]

W. Zhang, Continuous-time constrained stochastic games under the discounted cost criteria, Appl. Math. Optim., 77 (2018), 275-296.  doi: 10.1007/s00245-016-9374-0.  Google Scholar

[21]

Y. Zhang, Continuous-time Markov decision processes with exponential utility, SIAM J. Control Optim., 55 (2017), 2636-2660.  doi: 10.1137/16M1086261.  Google Scholar

[1]

Valery Y. Glizer, Oleg Kelis. Singular infinite horizon zero-sum linear-quadratic differential game: Saddle-point equilibrium sequence. Numerical Algebra, Control & Optimization, 2017, 7 (1) : 1-20. doi: 10.3934/naco.2017001

[2]

Pierre Cardaliaguet, Chloé Jimenez, Marc Quincampoix. Pure and Random strategies in differential game with incomplete informations. Journal of Dynamics & Games, 2014, 1 (3) : 363-375. doi: 10.3934/jdg.2014.1.363

[3]

Xian Chen, Zhi-Ming Ma. A transformation of Markov jump processes and applications in genetic study. Discrete & Continuous Dynamical Systems, 2014, 34 (12) : 5061-5084. doi: 10.3934/dcds.2014.34.5061

[4]

Yair Daon. Bernoullicity of equilibrium measures on countable Markov shifts. Discrete & Continuous Dynamical Systems, 2013, 33 (9) : 4003-4015. doi: 10.3934/dcds.2013.33.4003

[5]

Abbas Ja'afaru Badakaya, Aminu Sulaiman Halliru, Jamilu Adamu. Game value for a pursuit-evasion differential game problem in a Hilbert space. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021019

[6]

Benoît Perthame, P. E. Souganidis. Front propagation for a jump process model arising in spacial ecology. Discrete & Continuous Dynamical Systems, 2005, 13 (5) : 1235-1246. doi: 10.3934/dcds.2005.13.1235

[7]

Jerry L. Bona, Hongqiu Chen, Shu-Ming Sun, Bing-Yu Zhang. Comparison of quarter-plane and two-point boundary value problems: The KdV-equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 465-495. doi: 10.3934/dcdsb.2007.7.465

[8]

Jerry Bona, Hongqiu Chen, Shu Ming Sun, B.-Y. Zhang. Comparison of quarter-plane and two-point boundary value problems: the BBM-equation. Discrete & Continuous Dynamical Systems, 2005, 13 (4) : 921-940. doi: 10.3934/dcds.2005.13.921

[9]

Oksana Koltsova, Lev Lerman. Hamiltonian dynamics near nontransverse homoclinic orbit to saddle-focus equilibrium. Discrete & Continuous Dynamical Systems, 2009, 25 (3) : 883-913. doi: 10.3934/dcds.2009.25.883

[10]

Yanqing Liu, Yanyan Yin, Kok Lay Teo, Song Wang, Fei Liu. Probabilistic control of Markov jump systems by scenario optimization approach. Journal of Industrial & Management Optimization, 2019, 15 (3) : 1447-1453. doi: 10.3934/jimo.2018103

[11]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[12]

Xiao-Fei Peng, Wen Li. A new Bramble-Pasciak-like preconditioner for saddle point problems. Numerical Algebra, Control & Optimization, 2012, 2 (4) : 823-838. doi: 10.3934/naco.2012.2.823

[13]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[14]

K. Q. Lan, G. C. Yang. Optimal constants for two point boundary value problems. Conference Publications, 2007, 2007 (Special) : 624-633. doi: 10.3934/proc.2007.2007.624

[15]

Marta García-Huidobro, Raul Manásevich. A three point boundary value problem containing the operator. Conference Publications, 2003, 2003 (Special) : 313-319. doi: 10.3934/proc.2003.2003.313

[16]

M. B. Short, G. O. Mohler, P. J. Brantingham, G. E. Tita. Gang rivalry dynamics via coupled point process networks. Discrete & Continuous Dynamical Systems - B, 2014, 19 (5) : 1459-1477. doi: 10.3934/dcdsb.2014.19.1459

[17]

Gongpin Cheng, Lin Xu. Optimal size of business and dividend strategy in a nonlinear model with refinancing and liquidation value. Mathematical Control & Related Fields, 2017, 7 (1) : 1-19. doi: 10.3934/mcrf.2017001

[18]

Wei Wang, Yang Shen, Linyi Qian, Zhixin Yang. Hedging strategy for unit-linked life insurance contracts with self-exciting jump clustering. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021072

[19]

Isabelle Kuhwald, Ilya Pavlyukevich. Bistable behaviour of a jump-diffusion driven by a periodic stable-like additive process. Discrete & Continuous Dynamical Systems - B, 2016, 21 (9) : 3175-3190. doi: 10.3934/dcdsb.2016092

[20]

Wuyuan Jiang. The maximum surplus before ruin in a jump-diffusion insurance risk process with dependence. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3037-3050. doi: 10.3934/dcdsb.2018298

 Impact Factor: 

Metrics

  • PDF downloads (85)
  • HTML views (174)
  • Cited by (0)

Other articles
by authors

[Back to Top]