\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Copositivity meets D. C. optimization

  •  
Abstract / Introduction Full Text(HTML) Figure(0) / Table(1) Related Papers Cited by
  • Based on a work by M. Dur and J.-B. Hiriart-Urruty[3], we consider the problem of whether a symmetric matrix is copositive formulated as a difference of convex functions problem. The convex nondifferentiable function in this d.c. decomposition being proximable, we then apply a proximal-gradient method to approximate the related stationary points. Whereas, in [3], the DCA algorithm was used.

    Mathematics Subject Classification: Primary: 49J53, 65K10; Secondary: 49M37, 90C25.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Table 1.  Results for the Horn-matrix when running the heuristic for different values of $ r $ and $ c_n $, along with 1,000 starting points

    $ c_n=0.5 $ $ c_n=1 $
    $ r $ average min max % failure aver. min max % failure
    20 117 78 204 0 111 74 195 0
    10 64 32 116 0 58 35 109 0
    6 40 24 75 0 36 22 65 0
    4 29 17 53 0 23 13 46 0
    3.5 26 14 49 0 20 12 40 0
    3.2365 25 16 43 0 19 11 35 0
    $c_n=1.5$ $c_n=3$
    $ r $ average min max % failure aver. min max % failure
    20 110 74 192 0 108 72 188 0
    10 56 33 103 0 54 25 101 0
    6 34 20 64 0 32 17 60 0
    4 21 13 42 0 19 13 37 0
    3.5 18 8 34 0 16 9 31 0.15
    3.2365 16 11 35 16 14 9 28 0.17
    $c_n=5$ $c_n=40$
    $ r $ average min max % failure aver. min max % failure
    20 106 72 187 0 106 71 183 0
    10 53 27 100 0 53 24 99 0
    6 31 18 58 0 30 17 54 0
    4 18 9 32 0 17 10 34 0
    3.5 15 10 31 12 14 9 28 0.15
    3.2365 13 9 8 12 12 8 28 0.12
     | Show Table
    DownLoad: CSV
  • [1] F. J. Aragón Artacho, R. Campoy and P. T. Vuong, The Boosted DC Algorithm for linearly constrained DC programming, preprint, arXiv: 1908.01138.
    [2] P. L. Combettes and V. R. Wajs, Signal recovery by proximal forward-backward splitting, Multiscale Model. Simul., 4 (2005), 1168-1200.  doi: 10.1137/050626090.
    [3] M. Dür and J.-B. Hiriart-Urruty, Testing copositivity with the help of difference-of-convex optimization, Math. Program., 140 (2013), 31-43.  doi: 10.1007/s10107-012-0625-9.
    [4] J.-B. Hiriart-Urruty and C. Lemaréchal, Convex Analysis and Minimization Algorithms. I. Fundamentals, Grundlehren der Mathematischen Wissenschaften, 305, Springer-Verlag, Berlin, 1993. doi: 10.1007/978-3-662-02796-7.
    [5] J.-B. Hiriart-Urruty and A. Seeger, A variational approach to copositive matrices, SIAM Rev., 52 (2010), 593-629.  doi: 10.1137/090750391.
    [6] A. Moudafi and P.-E. Maingé, On the convergence of an approximate proximal method for DC functions, J. Comput. Math., 24 (2006), 475-480. 
    [7] J. C. O. SouzaP. R. Oliveira and A. Soubeyran, Global convergence of a proximal linearized algorithm for difference of convex functions, Optim. Lett., 10 (2016), 1529-1539.  doi: 10.1007/s11590-015-0969-1.
    [8] W.-Y. SunR. J. B. Sampaio and M. A. B. Candido, Proximal point algorithm for minimization of DC function, J. Comput. Math., 21 (2003), 451-462. 
  • 加载中

Tables(1)

SHARE

Article Metrics

HTML views(2312) PDF downloads(267) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return