[1]
|
S. Aghabozorgi, A. S. Shirkhorshidi and T. Y. Wah, Time-series clustering–A decade review, Information Systems, 53 (2015), 16-38.
doi: 10.1016/j.is.2015.04.007.
|
[2]
|
E. Alvarez, J. G. Brida and E. Limas, Clustering of time series for the analysis of the COVID-19 pandemic evolution, Economics Bulletin, 41 (2021), 1082-1096.
|
[3]
|
K. Asahi, E. A. Undurraga, R. Valdés and R. Wagner, The effect of {COVID-19} on the economy: Evidence from an early adopter of localized lockdowns, medRxiv, (2020).
doi: 10.1101/2020.09.21.20198887.
|
[4]
|
A. Ashofteh and J. M. Bravo, A study on the quality of novel coronavirus (COVID-19) official datasets, Statistical J. IAOS, 36 (2020), 291-301.
doi: 10.3233/SJI-200674.
|
[5]
|
V. D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in large networks, J. Statistical Mechanics: Theory and Experiment, (2008).
doi: 10.1088/1742-5468/2008/10/P10008.
|
[6]
|
T. Caliński and J. A. Harabasz, A dendrite method for cluster analysis, Comm. Statist., 3 (1974), 1-27.
doi: 10.1080/03610927408827101.
|
[7]
|
V. Chandu, Identification of spatial variations in COVID-19 epidemiological data using k-means clustering algorithm: A global perspective, medRxiv, 2020.
doi: 10.1101/2020.06.03.20121194.
|
[8]
|
G. Ciminelli and S. Garcia-Mandicó, Mitigation policies and emergency care management in Europe's ground zero for COVID-19, SSRN, (2020).
doi: 10.2139/ssrn.3604688.
|
[9]
|
C. Costa-Santos, A. Luísa Neves, R. Correia, P. Santos and M. Monteiro-Soares, et al., COVID-19 surveillance - A descriptive study on data quality issues, medRxiv, (2020).
doi: 10.1101/2020.11.03.20225565.
|
[10]
|
K. Degeling, N. N. Baxter, J. Emery, M. A. Jenkins and F. Franchini, et al., An inverse stage-shift model to estimate the excess mortality and health economic impact of delayed access to cancer services due to the COVID-19 pandemic, Asia-Pacific J. Clinical Oncology, 17 (2021), 359-367.
doi: 10.1111/ajco.13505.
|
[11]
|
R. O. Duda and P. E. Hart, D. G. Stork, Pattern Classification and Scene Analysis, Wiley New York, 1973.
|
[12]
|
A. Fahim, Finding the number of clusters in data and better initial centers for k-means algorithm, Internat. J. Intelligent Systems & Applications, 12 (2020).
|
[13]
|
G. Gan, C. Ma and J. Wu, Data Clustering. Theory, Algorithms, and Applications, ASA-SIAM Series on Statistics and Applied Probability, 20, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; American Statistical Association, Alexandria, VA, 2007.
doi: 10.1137/1.9780898718348.
|
[14]
|
A. Gandjour, How much reserve capacity is justifiable for hospital pandemic preparedness? A cost-effectiveness analysis for COVID-19 in Germany, medRxiv, (2020).
doi: 10.1101/2020.07.27.20162743.
|
[15]
|
A. Z. Górski, S. Drożdż and J. Kwapień, Minimal spanning tree graphs and power like scaling in FOREX networks, preprint, arXiv: 0809.0437.
|
[16]
|
M. O. Jackson, Social and Economic Networks, Princeton University Press, Princeton, NJ, 2010.
|
[17]
|
J. B. Kruskal Jr., On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Amer. Math. Soc., 7 (1956), 48-50.
doi: 10.1090/S0002-9939-1956-0078686-7.
|
[18]
|
J. Kwapień, S. Gworek, S. Drożdż and A. Górski, Analysis of a network structure of the foreign currency exchange market, J. Econ. Interact. Coord., 4 (2009).
doi: 10.1007/s11403-009-0047-9.
|
[19]
|
E. Limas, An application of minimal spanning trees and hierarchical trees to the study of Latin American exchange rates, J. Dyn. Games, 6 (2019), 131-148.
doi: 10.3934/jdg.2019010.
|
[20]
|
A. C. Mahasinghe, K. K. W. H. Erandi and S. S. N. Perera, An optimal lockdown relaxation strategy for minimizing the economic effects of COVID-19 outbreak, International J. Mathematics and Mathematical Sciences, 2021 (2021).
|
[21]
|
R. N. Mantegna, Hierarchical structure in financial markets, Eur. Phys. J. B - Condensed Matter and Complex Systems, 11 (1999), 193-197.
doi: 10.1007/s100510050929.
|
[22]
|
R. N. Mantegna and H. Stanley, An Introduction to Econophysics. Correlations and Complexity in Finance, Cambridge University Press, Cambridge, 2007.
|
[23]
|
S. Milan and E. Treré, The rise of the data poor: The COVID-19 pandemic seen from the margins, Social Media + Society, 6 (2020).
doi: 10.1177/2056305120948233.
|
[24]
|
F. Milani, COVID-19 outbreak, social response, and early economic effects: A global VAR analysis of cross-country interdependencies, J. Population Economics, 34 (2021), 223-252.
doi: 10.1007/s00148-020-00792-4.
|
[25]
|
B. W. Mol and J. Karnon, Strict lockdown versus flexible social distance strategy for COVID-19 disease: A cost-effectiveness analysis, medRxiv, (2020).
doi: 10.1101/2020.09.14.20194605.
|
[26]
|
R. C. Prim, Shortest connection networks and some generalizations, Bell System Tech. J., 36 (1957), 1389-1401.
doi: 10.1002/j.1538-7305.1957.tb01515.x.
|
[27]
|
M. Rešovský, D. Horváth, V. Gazda and M. Siničáková, Minimum spanning tree application in the currency market, Biatec, 21 (2013), 21-23. Available from: https://www.nbs.sk/img/Documents/PUBLIK_NBS_FSR/Biatec/Rok2013/07-2013/05_biatec13-7_resovsky_EN.pdf.
|
[28]
|
M. Roser, H. Ritchie, E. Ortiz-Ospina and J. Hasell, Coronavirus pandemic (COVID-19), Our World in Data, (2020).
|
[29]
|
F. Santiago, C. De Fuentes, J. A. Peerally and J. Larsen, Investing in innovative and productive capabilities for resilient economies in a post-COVID-19 world, Internat. J. Technological Learning, Innovation and Development, 12 (2020), 153-167.
doi: 10.1504/IJTLID.2020.110623.
|
[30]
|
P. Schellekens and D. M. Sourrouille, COVID-19 mortality in rich and poor countries: A tale of two pandemics?, World Bank Policy Research Working Paper, No. 9260, (2020).
|
[31]
|
D. Sherpa, Estimating impact of austerity policies in COVID-19 fatality rates: Examining the dynamics of economic policy and Case Fatality Rates (CFR) of COVID-19 in OECD countries, medRxiv, (2020).
doi: 10.2139/ssrn.3581274.
|
[32]
|
J. A. Tenreiro Machado and A. M. Lopes, Rare and extreme events: The case of COVID-19 pandemic, Nonlinear Dynamics, 100 (2020), 2953-2972.
doi: 10.1007/s11071-020-05680-w.
|
[33]
|
G.-J. Wang, C. Xie, Y.-J. Chen and S. Chen, Statistical properties of the foreign exchange network at different time scales: Evidence from detrended cross-correlation coefficient and minimum spanning tree, Entropy, 15 (2013), 1643-1662.
doi: 10.3390/e15051643.
|
[34]
|
V. Zarikas, S. G. Poulopoulos, Z. Gareiou and E. Zervas, Clustering analysis of countries using the COVID-19 cases dataset, Data in Brief, 31 (2020).
doi: 10.1016/j.dib.2020.105787.
|