doi: 10.3934/jdg.2021026
Online First

Online First articles are published articles within a journal that have not yet been assigned to a formal issue. This means they do not yet have a volume number, issue number, or page numbers assigned to them, however, they can still be found and cited using their DOI (Digital Object Identifier). Online First publication benefits the research community by making new scientific discoveries known as quickly as possible.

Readers can access Online First articles via the “Online First” tab for the selected journal.

Analysis of communities of countries with similar dynamics of the COVID-19 pandemic evolution

1. 

Research Group in Economic Dynamics, Faculty of Economics and Administration, Universidad de la República, Montevideo, Uruguay

2. 

Institute for Latin American Studies and School of Business & Economics, Freie Universität Berlin, Berlin, Germany

* Corresponding author: Juan Gabriel Brida

Received  January 2021 Revised  July 2021 Early access October 2021

This work addresses the spread of the coronavirus through a non-parametric approach, with the aim of identifying communities of countries based on how similar their evolution of the disease is. The analysis focuses on the number of daily new COVID-19 cases per ten thousand people during a period covering at least 250 days after the confirmation of the tenth case. Dynamic analysis is performed by constructing Minimal Spanning Trees (MST) and identifying groups of similarity in contagions evolution in 95 time windows of a 150-day amplitude that moves one day at a time. The intensity measure considered was the number of times countries belonged to a similar performance group in constructed time windows. Groups' composition is not stable, indicating that the COVID-19 evolution needs to be treated as a dynamic problem in the context of complex systems. Three communities were identified by applying the Louvain algorithm. Identified communities analysis according to each country's socioeconomic characteristics and variables related to the disease sheds light on whether there is any suggested course of action. Even when strong testing and tracing cases policies may be related with a more stable dynamic of the disease, results indicate that communities are conformed by countries with diverse characteristics. The best option to counteract the harmful effects of a pandemic may be having strong health systems in place, with contingent capacity to deal with unforeseen events and available resources capable of a rapid expansion of its capacity.

Citation: Emiliano Alvarez, Juan Gabriel Brida, Lucía Rosich, Erick Limas. Analysis of communities of countries with similar dynamics of the COVID-19 pandemic evolution. Journal of Dynamics & Games, doi: 10.3934/jdg.2021026
References:
[1]

S. AghabozorgiA. S. Shirkhorshidi and T. Y. Wah, Time-series clustering–A decade review, Information Systems, 53 (2015), 16-38.  doi: 10.1016/j.is.2015.04.007.  Google Scholar

[2]

E. AlvarezJ. G. Brida and E. Limas, Clustering of time series for the analysis of the COVID-19 pandemic evolution, Economics Bulletin, 41 (2021), 1082-1096.   Google Scholar

[3]

K. Asahi, E. A. Undurraga, R. Valdés and R. Wagner, The effect of {COVID-19} on the economy: Evidence from an early adopter of localized lockdowns, medRxiv, (2020). doi: 10.1101/2020.09.21.20198887.  Google Scholar

[4]

A. Ashofteh and J. M. Bravo, A study on the quality of novel coronavirus (COVID-19) official datasets, Statistical J. IAOS, 36 (2020), 291-301.  doi: 10.3233/SJI-200674.  Google Scholar

[5]

V. D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in large networks, J. Statistical Mechanics: Theory and Experiment, (2008). doi: 10.1088/1742-5468/2008/10/P10008.  Google Scholar

[6]

T. Caliński and J. A. Harabasz, A dendrite method for cluster analysis, Comm. Statist., 3 (1974), 1-27.  doi: 10.1080/03610927408827101.  Google Scholar

[7]

V. Chandu, Identification of spatial variations in COVID-19 epidemiological data using k-means clustering algorithm: A global perspective, medRxiv, 2020. doi: 10.1101/2020.06.03.20121194.  Google Scholar

[8]

G. Ciminelli and S. Garcia-Mandicó, Mitigation policies and emergency care management in Europe's ground zero for COVID-19, SSRN, (2020). doi: 10.2139/ssrn.3604688.  Google Scholar

[9]

C. Costa-Santos, A. Luísa Neves, R. Correia, P. Santos and M. Monteiro-Soares, et al., COVID-19 surveillance - A descriptive study on data quality issues, medRxiv, (2020). doi: 10.1101/2020.11.03.20225565.  Google Scholar

[10]

K. DegelingN. N. BaxterJ. EmeryM. A. Jenkins and F. Franchini, An inverse stage-shift model to estimate the excess mortality and health economic impact of delayed access to cancer services due to the COVID-19 pandemic, Asia-Pacific J. Clinical Oncology, 17 (2021), 359-367.  doi: 10.1111/ajco.13505.  Google Scholar

[11]

R. O. Duda and P. E. Hart, D. G. Stork, Pattern Classification and Scene Analysis, Wiley New York, 1973. Google Scholar

[12]

A. Fahim, Finding the number of clusters in data and better initial centers for k-means algorithm, Internat. J. Intelligent Systems & Applications, 12 (2020). Google Scholar

[13]

G. Gan, C. Ma and J. Wu, Data Clustering. Theory, Algorithms, and Applications, ASA-SIAM Series on Statistics and Applied Probability, 20, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; American Statistical Association, Alexandria, VA, 2007. doi: 10.1137/1.9780898718348.  Google Scholar

[14]

A. Gandjour, How much reserve capacity is justifiable for hospital pandemic preparedness? A cost-effectiveness analysis for COVID-19 in Germany, medRxiv, (2020). doi: 10.1101/2020.07.27.20162743.  Google Scholar

[15]

A. Z. Górski, S. Drożdż and J. Kwapień, Minimal spanning tree graphs and power like scaling in FOREX networks, preprint, arXiv: 0809.0437. Google Scholar

[16] M. O. Jackson, Social and Economic Networks, Princeton University Press, Princeton, NJ, 2010.   Google Scholar
[17]

J. B. Kruskal Jr., On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Amer. Math. Soc., 7 (1956), 48-50.  doi: 10.1090/S0002-9939-1956-0078686-7.  Google Scholar

[18]

J. Kwapień, S. Gworek, S. Drożdż and A. Górski, Analysis of a network structure of the foreign currency exchange market, J. Econ. Interact. Coord., 4 (2009). doi: 10.1007/s11403-009-0047-9.  Google Scholar

[19]

E. Limas, An application of minimal spanning trees and hierarchical trees to the study of Latin American exchange rates, J. Dyn. Games, 6 (2019), 131-148.  doi: 10.3934/jdg.2019010.  Google Scholar

[20]

A. C. Mahasinghe, K. K. W. H. Erandi and S. S. N. Perera, An optimal lockdown relaxation strategy for minimizing the economic effects of COVID-19 outbreak, International J. Mathematics and Mathematical Sciences, 2021 (2021). Google Scholar

[21]

R. N. Mantegna, Hierarchical structure in financial markets, Eur. Phys. J. B - Condensed Matter and Complex Systems, 11 (1999), 193-197.  doi: 10.1007/s100510050929.  Google Scholar

[22] R. N. Mantegna and H. Stanley, An Introduction to Econophysics. Correlations and Complexity in Finance, Cambridge University Press, Cambridge, 2007.   Google Scholar
[23]

S. Milan and E. Treré, The rise of the data poor: The COVID-19 pandemic seen from the margins, Social Media + Society, 6 (2020). doi: 10.1177/2056305120948233.  Google Scholar

[24]

F. Milani, COVID-19 outbreak, social response, and early economic effects: A global VAR analysis of cross-country interdependencies, J. Population Economics, 34 (2021), 223-252.  doi: 10.1007/s00148-020-00792-4.  Google Scholar

[25]

B. W. Mol and J. Karnon, Strict lockdown versus flexible social distance strategy for COVID-19 disease: A cost-effectiveness analysis, medRxiv, (2020). doi: 10.1101/2020.09.14.20194605.  Google Scholar

[26]

R. C. Prim, Shortest connection networks and some generalizations, Bell System Tech. J., 36 (1957), 1389-1401.  doi: 10.1002/j.1538-7305.1957.tb01515.x.  Google Scholar

[27]

M. Rešovský, D. Horváth, V. Gazda and M. Siničáková, Minimum spanning tree application in the currency market, Biatec, 21 (2013), 21-23. Available from: https://www.nbs.sk/img/Documents/PUBLIK_NBS_FSR/Biatec/Rok2013/07-2013/05_biatec13-7_resovsky_EN.pdf. Google Scholar

[28]

M. Roser, H. Ritchie, E. Ortiz-Ospina and J. Hasell, Coronavirus pandemic (COVID-19), Our World in Data, (2020). Google Scholar

[29]

F. SantiagoC. De FuentesJ. A. Peerally and J. Larsen, Investing in innovative and productive capabilities for resilient economies in a post-COVID-19 world, Internat. J. Technological Learning, Innovation and Development, 12 (2020), 153-167.  doi: 10.1504/IJTLID.2020.110623.  Google Scholar

[30]

P. Schellekens and D. M. Sourrouille, COVID-19 mortality in rich and poor countries: A tale of two pandemics?, World Bank Policy Research Working Paper, No. 9260, (2020). Google Scholar

[31]

D. Sherpa, Estimating impact of austerity policies in COVID-19 fatality rates: Examining the dynamics of economic policy and Case Fatality Rates (CFR) of COVID-19 in OECD countries, medRxiv, (2020). doi: 10.2139/ssrn.3581274.  Google Scholar

[32]

J. A. Tenreiro Machado and A. M. Lopes, Rare and extreme events: The case of COVID-19 pandemic, Nonlinear Dynamics, 100 (2020), 2953-2972.  doi: 10.1007/s11071-020-05680-w.  Google Scholar

[33]

G.-J. WangC. XieY.-J. Chen and S. Chen, Statistical properties of the foreign exchange network at different time scales: Evidence from detrended cross-correlation coefficient and minimum spanning tree, Entropy, 15 (2013), 1643-1662.  doi: 10.3390/e15051643.  Google Scholar

[34]

V. Zarikas, S. G. Poulopoulos, Z. Gareiou and E. Zervas, Clustering analysis of countries using the COVID-19 cases dataset, Data in Brief, 31 (2020). doi: 10.1016/j.dib.2020.105787.  Google Scholar

show all references

References:
[1]

S. AghabozorgiA. S. Shirkhorshidi and T. Y. Wah, Time-series clustering–A decade review, Information Systems, 53 (2015), 16-38.  doi: 10.1016/j.is.2015.04.007.  Google Scholar

[2]

E. AlvarezJ. G. Brida and E. Limas, Clustering of time series for the analysis of the COVID-19 pandemic evolution, Economics Bulletin, 41 (2021), 1082-1096.   Google Scholar

[3]

K. Asahi, E. A. Undurraga, R. Valdés and R. Wagner, The effect of {COVID-19} on the economy: Evidence from an early adopter of localized lockdowns, medRxiv, (2020). doi: 10.1101/2020.09.21.20198887.  Google Scholar

[4]

A. Ashofteh and J. M. Bravo, A study on the quality of novel coronavirus (COVID-19) official datasets, Statistical J. IAOS, 36 (2020), 291-301.  doi: 10.3233/SJI-200674.  Google Scholar

[5]

V. D. Blondel, J.-L. Guillaume, R. Lambiotte and E. Lefebvre, Fast unfolding of communities in large networks, J. Statistical Mechanics: Theory and Experiment, (2008). doi: 10.1088/1742-5468/2008/10/P10008.  Google Scholar

[6]

T. Caliński and J. A. Harabasz, A dendrite method for cluster analysis, Comm. Statist., 3 (1974), 1-27.  doi: 10.1080/03610927408827101.  Google Scholar

[7]

V. Chandu, Identification of spatial variations in COVID-19 epidemiological data using k-means clustering algorithm: A global perspective, medRxiv, 2020. doi: 10.1101/2020.06.03.20121194.  Google Scholar

[8]

G. Ciminelli and S. Garcia-Mandicó, Mitigation policies and emergency care management in Europe's ground zero for COVID-19, SSRN, (2020). doi: 10.2139/ssrn.3604688.  Google Scholar

[9]

C. Costa-Santos, A. Luísa Neves, R. Correia, P. Santos and M. Monteiro-Soares, et al., COVID-19 surveillance - A descriptive study on data quality issues, medRxiv, (2020). doi: 10.1101/2020.11.03.20225565.  Google Scholar

[10]

K. DegelingN. N. BaxterJ. EmeryM. A. Jenkins and F. Franchini, An inverse stage-shift model to estimate the excess mortality and health economic impact of delayed access to cancer services due to the COVID-19 pandemic, Asia-Pacific J. Clinical Oncology, 17 (2021), 359-367.  doi: 10.1111/ajco.13505.  Google Scholar

[11]

R. O. Duda and P. E. Hart, D. G. Stork, Pattern Classification and Scene Analysis, Wiley New York, 1973. Google Scholar

[12]

A. Fahim, Finding the number of clusters in data and better initial centers for k-means algorithm, Internat. J. Intelligent Systems & Applications, 12 (2020). Google Scholar

[13]

G. Gan, C. Ma and J. Wu, Data Clustering. Theory, Algorithms, and Applications, ASA-SIAM Series on Statistics and Applied Probability, 20, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; American Statistical Association, Alexandria, VA, 2007. doi: 10.1137/1.9780898718348.  Google Scholar

[14]

A. Gandjour, How much reserve capacity is justifiable for hospital pandemic preparedness? A cost-effectiveness analysis for COVID-19 in Germany, medRxiv, (2020). doi: 10.1101/2020.07.27.20162743.  Google Scholar

[15]

A. Z. Górski, S. Drożdż and J. Kwapień, Minimal spanning tree graphs and power like scaling in FOREX networks, preprint, arXiv: 0809.0437. Google Scholar

[16] M. O. Jackson, Social and Economic Networks, Princeton University Press, Princeton, NJ, 2010.   Google Scholar
[17]

J. B. Kruskal Jr., On the shortest spanning subtree of a graph and the traveling salesman problem, Proc. Amer. Math. Soc., 7 (1956), 48-50.  doi: 10.1090/S0002-9939-1956-0078686-7.  Google Scholar

[18]

J. Kwapień, S. Gworek, S. Drożdż and A. Górski, Analysis of a network structure of the foreign currency exchange market, J. Econ. Interact. Coord., 4 (2009). doi: 10.1007/s11403-009-0047-9.  Google Scholar

[19]

E. Limas, An application of minimal spanning trees and hierarchical trees to the study of Latin American exchange rates, J. Dyn. Games, 6 (2019), 131-148.  doi: 10.3934/jdg.2019010.  Google Scholar

[20]

A. C. Mahasinghe, K. K. W. H. Erandi and S. S. N. Perera, An optimal lockdown relaxation strategy for minimizing the economic effects of COVID-19 outbreak, International J. Mathematics and Mathematical Sciences, 2021 (2021). Google Scholar

[21]

R. N. Mantegna, Hierarchical structure in financial markets, Eur. Phys. J. B - Condensed Matter and Complex Systems, 11 (1999), 193-197.  doi: 10.1007/s100510050929.  Google Scholar

[22] R. N. Mantegna and H. Stanley, An Introduction to Econophysics. Correlations and Complexity in Finance, Cambridge University Press, Cambridge, 2007.   Google Scholar
[23]

S. Milan and E. Treré, The rise of the data poor: The COVID-19 pandemic seen from the margins, Social Media + Society, 6 (2020). doi: 10.1177/2056305120948233.  Google Scholar

[24]

F. Milani, COVID-19 outbreak, social response, and early economic effects: A global VAR analysis of cross-country interdependencies, J. Population Economics, 34 (2021), 223-252.  doi: 10.1007/s00148-020-00792-4.  Google Scholar

[25]

B. W. Mol and J. Karnon, Strict lockdown versus flexible social distance strategy for COVID-19 disease: A cost-effectiveness analysis, medRxiv, (2020). doi: 10.1101/2020.09.14.20194605.  Google Scholar

[26]

R. C. Prim, Shortest connection networks and some generalizations, Bell System Tech. J., 36 (1957), 1389-1401.  doi: 10.1002/j.1538-7305.1957.tb01515.x.  Google Scholar

[27]

M. Rešovský, D. Horváth, V. Gazda and M. Siničáková, Minimum spanning tree application in the currency market, Biatec, 21 (2013), 21-23. Available from: https://www.nbs.sk/img/Documents/PUBLIK_NBS_FSR/Biatec/Rok2013/07-2013/05_biatec13-7_resovsky_EN.pdf. Google Scholar

[28]

M. Roser, H. Ritchie, E. Ortiz-Ospina and J. Hasell, Coronavirus pandemic (COVID-19), Our World in Data, (2020). Google Scholar

[29]

F. SantiagoC. De FuentesJ. A. Peerally and J. Larsen, Investing in innovative and productive capabilities for resilient economies in a post-COVID-19 world, Internat. J. Technological Learning, Innovation and Development, 12 (2020), 153-167.  doi: 10.1504/IJTLID.2020.110623.  Google Scholar

[30]

P. Schellekens and D. M. Sourrouille, COVID-19 mortality in rich and poor countries: A tale of two pandemics?, World Bank Policy Research Working Paper, No. 9260, (2020). Google Scholar

[31]

D. Sherpa, Estimating impact of austerity policies in COVID-19 fatality rates: Examining the dynamics of economic policy and Case Fatality Rates (CFR) of COVID-19 in OECD countries, medRxiv, (2020). doi: 10.2139/ssrn.3581274.  Google Scholar

[32]

J. A. Tenreiro Machado and A. M. Lopes, Rare and extreme events: The case of COVID-19 pandemic, Nonlinear Dynamics, 100 (2020), 2953-2972.  doi: 10.1007/s11071-020-05680-w.  Google Scholar

[33]

G.-J. WangC. XieY.-J. Chen and S. Chen, Statistical properties of the foreign exchange network at different time scales: Evidence from detrended cross-correlation coefficient and minimum spanning tree, Entropy, 15 (2013), 1643-1662.  doi: 10.3390/e15051643.  Google Scholar

[34]

V. Zarikas, S. G. Poulopoulos, Z. Gareiou and E. Zervas, Clustering analysis of countries using the COVID-19 cases dataset, Data in Brief, 31 (2020). doi: 10.1016/j.dib.2020.105787.  Google Scholar

Figure 1.  Number of identified groups and MST total distance in each time window. Source: own construction based on OWID data
Figure 2.  Number of identified groups and MST average path in each time window. Source: own construction based on OWID data
Figure 3.  Number of times two countries where in the same group per time window. Source: own construction based on OWID data
Figure 4.  Intensity of similarity in the disease evolution network. Source: own construction based on OWID data. Appendix B presents countries corresponding to each number
Figure 5.  Rolling 7-day average of daily new confirmed COVID-19 cases per million people by country and community. Source: own construction based on OWID data. Black central lines correspond to group median; high and low black lines represent the upper and lower quartiles respectively
Figure 6.  Communities map. Source: own construction based on OWID data
Table 1.  Communities' demographic and socioeconomic data. Source: own construction based on OWID data. Note: Difference between sum of countries frequency and total countries per group at each variable are due to lack of data. *Measure in constant 2011 international dollars, most recent year available
C 1 C 2 C 3
Average population density 326 182 96
Number of countries per 1 14 15 1
quartile of population 2 10 16 5
density 3 13 16 2
4 19 11 1
Median age 33 35 29
Number of countries per 1 16 11 3
quartile of median age 2 13 14 3
3 10 19 1
4 14 15 1
Average GDP per capita* 20545 26327 11196
Number of countries per 1 16 9 4
quartile of GDP per capita 2 15 13 2
3 12 16 3
4 11 19 0
Average life expectancy 75 76 72
Number of countries per 1 14 12 5
quartile of life expectancy 2 15 15 1
3 14 14 3
4 13 18 0
Av. Human Development Index 32.7 34.6 29.5
Number of countries per 1 17 11 3
quartile of Human 2 16 12 2
Development Index 3 9 18 3
4 14 17 0
C 1 C 2 C 3
Average population density 326 182 96
Number of countries per 1 14 15 1
quartile of population 2 10 16 5
density 3 13 16 2
4 19 11 1
Median age 33 35 29
Number of countries per 1 16 11 3
quartile of median age 2 13 14 3
3 10 19 1
4 14 15 1
Average GDP per capita* 20545 26327 11196
Number of countries per 1 16 9 4
quartile of GDP per capita 2 15 13 2
3 12 16 3
4 11 19 0
Average life expectancy 75 76 72
Number of countries per 1 14 12 5
quartile of life expectancy 2 15 15 1
3 14 14 3
4 13 18 0
Av. Human Development Index 32.7 34.6 29.5
Number of countries per 1 17 11 3
quartile of Human 2 16 12 2
Development Index 3 9 18 3
4 14 17 0
Table 2.  Communities geographic data. Source: own construction based on OWID data
Communities No. of countries by continent
Countries Africa Asia Europe North America Oceania South America Islands
1 56 11 17 14 8 1 5 9
2 59 7 18 24 5 1 4 10
3 9 3 2 3 1 0 0 0
Total 124 21 37 41 14 2 9 19
Communities No. of countries by continent
Countries Africa Asia Europe North America Oceania South America Islands
1 56 11 17 14 8 1 5 9
2 59 7 18 24 5 1 4 10
3 9 3 2 3 1 0 0 0
Total 124 21 37 41 14 2 9 19
Table 3.  Countries actions in relation to COVID – 19. Source: own construction based on OWID data. Note: Difference between sum of countries frequency and total countries per group at each variable are due to lack of data.
Testing policy codebook: 0 – No testing policy, 1-Only those who both (a) have symptoms and also (b) meet specific criteria (e.g. key workers, admitted to hospital, came into contact with a known case, returned from overseas), 2-Testing of anyone showing COVID-19 symptoms, 3-Open public testing (e.g. "drive through" testing available to asymptomatic people). *Any country of the sample had category 0 as predominant testing policy. Tracing policy codebook: 0 – No tracing, 1 -Some, but not all, cases are traced, 2 – All cases are traced
C 1 C 2 C 3
Average Max. Government Response Index 77 76 75
Number of countries per quartile 1 10 16 3
of Max. Government Response Index 2 18 8 2
3 15 13 1
4 10 17 2
Average Max. Containment Health Index 80 79 77
Number of countries per quartile 1 10 16 3
of Max. Containment Health Index 2 14 8 2
3 18 14 1
4 11 16 2
Average Max. Economic Support Index 65 68 70
Number of countries per quartile 1 7 8 1
of Max. Economic Support Index 2 20 16 2
3 15 14 3
4 11 16 2
Predominant testing policy* 2 2 1
Number of countries per 1 14 14 5
predominant testing policy 2 25 23 3
3 15 18 0
Predominant contact tracing policy 2 2 1
Number of countries per predominant 0 4 3 0
contact tracing policy 1 19 11 6
2 31 41 2
C 1 C 2 C 3
Average Max. Government Response Index 77 76 75
Number of countries per quartile 1 10 16 3
of Max. Government Response Index 2 18 8 2
3 15 13 1
4 10 17 2
Average Max. Containment Health Index 80 79 77
Number of countries per quartile 1 10 16 3
of Max. Containment Health Index 2 14 8 2
3 18 14 1
4 11 16 2
Average Max. Economic Support Index 65 68 70
Number of countries per quartile 1 7 8 1
of Max. Economic Support Index 2 20 16 2
3 15 14 3
4 11 16 2
Predominant testing policy* 2 2 1
Number of countries per 1 14 14 5
predominant testing policy 2 25 23 3
3 15 18 0
Predominant contact tracing policy 2 2 1
Number of countries per predominant 0 4 3 0
contact tracing policy 1 19 11 6
2 31 41 2
Table 4.  Healthcare system and deaths per million. Source: own construction based on OWID data. Note: The difference between the sum of the countries frequency and total countries per group at each variable are due to lack of data
C 1 C 2 C 3
Average Healthcare access 68 72 61
and quality index
Number of countries per 1 15 12 3
quartile of Healthcare access 2 18 10 3
and quality index 3 9 19 2
4 13 18 0
Average deaths per million 289 285 281
at December 1st
Number of countries per 1 16 9 3
quartile of deaths per million 2 12 17 2
by December 1st 3 10 20 1
4 16 12 3
C 1 C 2 C 3
Average Healthcare access 68 72 61
and quality index
Number of countries per 1 15 12 3
quartile of Healthcare access 2 18 10 3
and quality index 3 9 19 2
4 13 18 0
Average deaths per million 289 285 281
at December 1st
Number of countries per 1 16 9 3
quartile of deaths per million 2 12 17 2
by December 1st 3 10 20 1
4 16 12 3
Table 5.  Country community changes by allowed group maximum in each time window. Country community changes by allowed group maximum in each time window
Max. No. of groups per time window
30 20 10
Belgium 1 1 2
Bolivia 1 3 1
Bangladesh 1 2 2
Andorra 1 3 1
Chile 1 1 2
Morocco 1 1 2
Togo 1 3 3
Australia 2 3 3
South Africa 2 3 3
Montenegro 3 2 3
Max. No. of groups per time window
30 20 10
Belgium 1 1 2
Bolivia 1 3 1
Bangladesh 1 2 2
Andorra 1 3 1
Chile 1 1 2
Morocco 1 1 2
Togo 1 3 3
Australia 2 3 3
South Africa 2 3 3
Montenegro 3 2 3
Table 6.  Countries' data. Source: own construction based on OWID data. Reference: (1) Population density; (2): Median age; (3): GDP per capita; (4): Life expectancy; (5): Human Development Index; (6): Max Government response index
Country Cluster Continent (1) (2) (3) (4) (5) (6)
Uruguay 1 South America 19.75 35.60 20551 77.91 0.80 61.31
Azerbaijan 1 Asia 119.31 32.40 15847 73.00 0.76 86.31
Burkina Faso 1 Africa 70.15 17.60 1703 61.58 0.42 72.62
Belgium 1 Europe 375.56 41.80 42659 81.63 0.92 76.79
Bosnia&Herzegovina 1 Europe 68.50 42.50 11714 77.40 0.77 75.00
Bolivia 1 South America 10.20 25.40 6886 71.51 0.69 76.79
Bangladesh 1 Asia 1265.04 27.50 3524 72.59 0.61 82.74
China 1 Asia 147.67 38.70 15309 76.91 0.75 82.14
Switzerland 1 Europe 214.24 43.10 57410 83.78 0.94 61.90
Germany 1 Europe 237.02 46.60 45229 81.33 0.94 72.62
Dominica 1 North America 98.57 - 9673 75.00 0.72 76.79
Dominican Republic 1 North America 222.87 27.60 14601 74.08 0.74 81.55
Andorra 1 Europe 163.76 - - 83.73 0.86 72.02
Algeria 1 Africa 17.35 29.10 13914 76.88 0.75 78.57
Ghana 1 Africa 126.72 21.10 4228 64.07 0.59 76.79
Spain 1 Europe 93.11 45.50 34272 83.56 0.89 77.98
Greece 1 Europe 83.48 45.30 24574 82.24 0.87 84.52
Guatemala 1 North America 157.83 22.90 7424 74.30 0.65 82.74
India 1 Asia 450.42 28.20 6427 69.66 0.64 95.54
Japan 1 Asia 347.78 48.20 39002 84.63 0.91 51.79
Kyrgyzstan 1 Asia 32.33 26.30 3393 71.45 0.67 -
Canada 1 North America 4.04 41.40 44018 82.43 0.93 72.62
Kenya 1 Africa 87.32 20.00 2993 66.70 0.59 82.14
Armenia 1 Asia 102.93 35.70 8788 75.09 0.76 -
Barbados 1 North America 664.46 39.80 16978 79.19 0.80 77.98
Kazakhstan 1 Asia 6.68 30.60 24056 73.60 0.80 78.57
Slovenia 1 Europe 102.62 44.50 31401 81.32 0.90 83.93
United States 1 North America 35.61 38.30 54225 78.86 0.92 74.40
Liechtenstein 1 Europe 237.01 - - 82.49 0.92 -
Madagascar 1 Africa 43.95 19.60 1416 67.04 0.52 67.26
Bulgaria 1 Europe 65.18 44.70 18563 75.05 0.81 74.40
Jamaica 1 North America 266.88 31.40 8194 74.47 0.73 74.40
Lebanon 1 Asia 594.56 31.10 13368 78.93 0.76 73.21
Chile 1 South America 24.28 35.40 22767 80.18 0.84 84.82
Mexico 1 North America 66.44 29.30 17336 75.05 0.77 69.05
Morocco 1 Africa 80.08 29.60 7485 76.68 0.67 86.31
Sri Lanka 1 Asia 341.96 34.10 11669 76.98 0.77 79.17
Mongolia 1 Asia 1.98 28.60 11841 69.87 0.74 82.74
Nigeria 1 Africa 209.59 18.10 5338 54.69 0.53 70.83
Colombia 1 South America 44.22 32.20 13255 77.29 0.75 88.10
Netherlands 1 Europe 508.54 43.20 48473 82.28 0.93 66.67
New Zealand 1 Oceania 18.21 37.90 36086 82.29 0.92 82.74
Afghanistan 1 Asia 54.42 18.60 1804 64.83 0.50 65.48
Poland 1 Europe 124.03 41.80 27216 78.73 0.87 73.81
Paraguay 1 South America 17.14 26.50 8827 74.25 0.70 79.76
Palestine 1 Asia 778.20 20.40 4450 74.05 0.69 75.00
Qatar 1 Asia 227.32 31.90 116936 80.23 0.86 82.14
Romania 1 Europe 85.13 43.00 23313 76.05 0.81 80.95
Rwanda 1 Africa 494.87 20.30 1854 69.02 0.52 85.12
Egypt 1 Africa 98.00 25.30 10550 71.99 0.70 80.36
Russia 1 Europe 8.82 39.60 24766 72.58 0.82 77.98
Thailand 1 Asia 135.13 40.10 16278 77.15 0.76 80.06
Togo 1 Africa 143.37 19.40 1430 61.04 0.50 69.05
Vietnam 1 Asia 308.13 32.60 6172 75.40 0.69 83.33
Singapore 1 Asia 7915.73 42.40 85535 83.62 0.93 85.71
Zambia 1 Africa 23.00 17.70 3689 63.89 0.59 63.99
Albania 2 Europe 104.87 38.00 11803 78.57 0.79 75.60
Australia 2 Oceania 3.20 37.90 44649 83.44 0.94 82.14
Austria 2 Europe 106.75 44.40 45437 81.54 0.91 86.90
Brunei 2 Asia 81.35 32.40 71809 75.86 0.85 49.40
Brazil 2 South America 25.04 33.50 14103 75.88 0.76 77.38
Cote d'Ivoire 2 Africa 76.40 18.70 3601 57.78 0.49 68.15
Argentina 2 South America 16.18 31.90 18934 76.67 0.83 89.88
Denmark 2 Europe 136.52 42.30 46683 80.90 0.93 69.05
Belarus 2 Europe 46.86 40.30 17168 74.79 0.81 30.36
Estonia 2 Europe 31.03 42.70 29481 78.74 0.87 65.48
Costa Rica 2 North America 96.08 33.60 15525 80.28 0.79 69.05
Honduras 2 North America 82.81 24.90 4542 75.27 0.62 88.10
Serbia 2 Europe 80.29 41.20 14049 76.00 0.79 79.17
Hungary 2 Europe 108.04 43.40 26778 76.88 0.84 74.11
Ireland 2 Europe 69.87 38.70 67335 82.30 0.94 82.14
Croatia 2 Europe 73.73 44.00 22670 78.49 0.83 86.31
Iceland 2 Europe 3.40 37.30 46483 82.99 0.94 64.29
Italy 2 Europe 205.86 47.90 35220 83.51 0.88 85.42
El Salvador 2 North America 307.81 27.60 7292 73.32 0.67 91.07
Peru 2 South America 25.13 29.10 12237 76.74 0.75 86.31
Slovakia 2 Europe 113.13 41.20 30155 77.54 0.86 -
Cyprus 2 Europe 127.66 37.30 32415 80.98 0.87 89.29
Iran 2 Asia 49.83 32.40 19083 76.68 0.80 63.99
Cambodia 2 Asia 90.67 25.60 3645 69.82 0.58 51.79
Kuwait 2 Asia 232.13 33.70 65531 75.49 0.80 86.90
Portugal 2 Europe 112.37 46.20 27937 82.05 0.85 81.55
United Arab Emirates 2 Asia 112.44 34.00 67293 77.97 0.86 86.31
Djibouti 2 Africa 41.29 25.40 2705 67.11 0.48 82.14
Equatorial Guinea 2 Africa 45.19 22.40 22605 58.74 0.59 -
Israel 2 Asia 402.61 30.60 33132 82.97 0.90 89.88
South Korea 2 Asia 527.97 43.40 35938 83.03 0.90 76.19
Maldives 2 Asia 1454.43 30.60 15184 78.92 0.72 -
Bahrain 2 Asia 1935.91 32.40 43291 77.29 0.85 80.36
United Kingdom 2 Europe 272.90 40.80 39753 81.32 0.92 74.70
Philippines 2 Asia 351.87 25.20 7599 71.23 0.70 85.12
Moldova 2 Europe 123.66 37.60 5190 71.90 0.70 75.00
Macedonia 2 Europe 82.60 39.10 13111 75.80 0.76 -
Finland 2 Europe 18.14 42.80 40586 81.91 0.92 56.55
Malta 2 Europe 1454.04 42.40 36513 82.53 0.88 -
Malaysia 2 Asia 96.25 29.90 26808 76.16 0.80 81.85
Cuba 2 North America 110.41 43.10 0 78.80 0.78 82.14
Mali 2 Africa 15.20 16.40 2014 59.31 0.43 66.67
Oman 2 Asia 14.98 30.70 37961 77.86 0.82 88.69
Saudi Arabia 2 Asia 15.32 31.90 49045 75.13 0.85 87.50
France 2 Europe 122.58 42.00 38606 82.66 0.90 79.17
Iraq 2 Asia 88.13 20.00 15664 70.60 0.69 82.14
Norway 2 Europe 14.46 39.70 64800 82.40 0.95 69.64
Senegal 2 Africa 82.33 18.70 2471 67.94 0.51 70.83
Turkey 2 Asia 104.91 31.60 25129 77.69 0.79 78.87
Trinidad and Tobago 2 North America 266.89 36.20 28763 73.51 0.78 82.74
Georgia 2 Asia 65.03 38.70 9745 73.77 0.78 85.12
Taiwan 2 Asia 0.00 42.20 - 80.46 - 44.64
Ukraine 2 Europe 77.39 41.40 7894 72.06 0.75 79.76
Venezuela 2 South America 36.25 29.00 16745 72.06 0.76 77.98
D. R. of Congo 2 Africa 35.88 17.00 808 60.68 0.46 71.13
Czech Republic 2 Europe 137.18 43.30 32606 79.38 0.89 84.52
Indonesia 2 Asia 145.73 29.30 11189 71.72 0.69 68.15
Sweden 2 Europe 24.72 41.00 46949 82.80 0.93 55.36
South Africa 2 Africa 46.75 27.30 12295 64.13 0.70 84.52
Cameroon 3 Africa 50.89 18.80 3365 59.29 0.56 59.52
Ethiopia 3 Africa 104.96 19.80 1730 66.60 0.46 70.24
Latvia 3 Europe 31.21 43.90 25064 75.29 0.85 64.88
Montenegro 3 Europe 46.28 39.10 16409 76.88 0.81 -
Pakistan 3 Asia 255.57 23.50 5035 67.27 0.56 77.38
Panama 3 North America 55.13 29.70 22267 78.51 0.79 85.71
Tunisia 3 Africa 74.23 32.70 10849 76.70 0.74 76.19
Uzbekistan 3 Asia 76.13 28.20 6253 71.72 0.71 83.04
Kosovo 3 Europe 168.16 - 9796 71.95 - 79.76
Country Cluster Continent (1) (2) (3) (4) (5) (6)
Uruguay 1 South America 19.75 35.60 20551 77.91 0.80 61.31
Azerbaijan 1 Asia 119.31 32.40 15847 73.00 0.76 86.31
Burkina Faso 1 Africa 70.15 17.60 1703 61.58 0.42 72.62
Belgium 1 Europe 375.56 41.80 42659 81.63 0.92 76.79
Bosnia&Herzegovina 1 Europe 68.50 42.50 11714 77.40 0.77 75.00
Bolivia 1 South America 10.20 25.40 6886 71.51 0.69 76.79
Bangladesh 1 Asia 1265.04 27.50 3524 72.59 0.61 82.74
China 1 Asia 147.67 38.70 15309 76.91 0.75 82.14
Switzerland 1 Europe 214.24 43.10 57410 83.78 0.94 61.90
Germany 1 Europe 237.02 46.60 45229 81.33 0.94 72.62
Dominica 1 North America 98.57 - 9673 75.00 0.72 76.79
Dominican Republic 1 North America 222.87 27.60 14601 74.08 0.74 81.55
Andorra 1 Europe 163.76 - - 83.73 0.86 72.02
Algeria 1 Africa 17.35 29.10 13914 76.88 0.75 78.57
Ghana 1 Africa 126.72 21.10 4228 64.07 0.59 76.79
Spain 1 Europe 93.11 45.50 34272 83.56 0.89 77.98
Greece 1 Europe 83.48 45.30 24574 82.24 0.87 84.52
Guatemala 1 North America 157.83 22.90 7424 74.30 0.65 82.74
India 1 Asia 450.42 28.20 6427 69.66 0.64 95.54
Japan 1 Asia 347.78 48.20 39002 84.63 0.91 51.79
Kyrgyzstan 1 Asia 32.33 26.30 3393 71.45 0.67 -
Canada 1 North America 4.04 41.40 44018 82.43 0.93 72.62
Kenya 1 Africa 87.32 20.00 2993 66.70 0.59 82.14
Armenia 1 Asia 102.93 35.70 8788 75.09 0.76 -
Barbados 1 North America 664.46 39.80 16978 79.19 0.80 77.98
Kazakhstan 1 Asia 6.68 30.60 24056 73.60 0.80 78.57
Slovenia 1 Europe 102.62 44.50 31401 81.32 0.90 83.93
United States 1 North America 35.61 38.30 54225 78.86 0.92 74.40
Liechtenstein 1 Europe 237.01 - - 82.49 0.92 -
Madagascar 1 Africa 43.95 19.60 1416 67.04 0.52 67.26
Bulgaria 1 Europe 65.18 44.70 18563 75.05 0.81 74.40
Jamaica 1 North America 266.88 31.40 8194 74.47 0.73 74.40
Lebanon 1 Asia 594.56 31.10 13368 78.93 0.76 73.21
Chile 1 South America 24.28 35.40 22767 80.18 0.84 84.82
Mexico 1 North America 66.44 29.30 17336 75.05 0.77 69.05
Morocco 1 Africa 80.08 29.60 7485 76.68 0.67 86.31
Sri Lanka 1 Asia 341.96 34.10 11669 76.98 0.77 79.17
Mongolia 1 Asia 1.98 28.60 11841 69.87 0.74 82.74
Nigeria 1 Africa 209.59 18.10 5338 54.69 0.53 70.83
Colombia 1 South America 44.22 32.20 13255 77.29 0.75 88.10
Netherlands 1 Europe 508.54 43.20 48473 82.28 0.93 66.67
New Zealand 1 Oceania 18.21 37.90 36086 82.29 0.92 82.74
Afghanistan 1 Asia 54.42 18.60 1804 64.83 0.50 65.48
Poland 1 Europe 124.03 41.80 27216 78.73 0.87 73.81
Paraguay 1 South America 17.14 26.50 8827 74.25 0.70 79.76
Palestine 1 Asia 778.20 20.40 4450 74.05 0.69 75.00
Qatar 1 Asia 227.32 31.90 116936 80.23 0.86 82.14
Romania 1 Europe 85.13 43.00 23313 76.05 0.81 80.95
Rwanda 1 Africa 494.87 20.30 1854 69.02 0.52 85.12
Egypt 1 Africa 98.00 25.30 10550 71.99 0.70 80.36
Russia 1 Europe 8.82 39.60 24766 72.58 0.82 77.98
Thailand 1 Asia 135.13 40.10 16278 77.15 0.76 80.06
Togo 1 Africa 143.37 19.40 1430 61.04 0.50 69.05
Vietnam 1 Asia 308.13 32.60 6172 75.40 0.69 83.33
Singapore 1 Asia 7915.73 42.40 85535 83.62 0.93 85.71
Zambia 1 Africa 23.00 17.70 3689 63.89 0.59 63.99
Albania 2 Europe 104.87 38.00 11803 78.57 0.79 75.60
Australia 2 Oceania 3.20 37.90 44649 83.44 0.94 82.14
Austria 2 Europe 106.75 44.40 45437 81.54 0.91 86.90
Brunei 2 Asia 81.35 32.40 71809 75.86 0.85 49.40
Brazil 2 South America 25.04 33.50 14103 75.88 0.76 77.38
Cote d'Ivoire 2 Africa 76.40 18.70 3601 57.78 0.49 68.15
Argentina 2 South America 16.18 31.90 18934 76.67 0.83 89.88
Denmark 2 Europe 136.52 42.30 46683 80.90 0.93 69.05
Belarus 2 Europe 46.86 40.30 17168 74.79 0.81 30.36
Estonia 2 Europe 31.03 42.70 29481 78.74 0.87 65.48
Costa Rica 2 North America 96.08 33.60 15525 80.28 0.79 69.05
Honduras 2 North America 82.81 24.90 4542 75.27 0.62 88.10
Serbia 2 Europe 80.29 41.20 14049 76.00 0.79 79.17
Hungary 2 Europe 108.04 43.40 26778 76.88 0.84 74.11
Ireland 2 Europe 69.87 38.70 67335 82.30 0.94 82.14
Croatia 2 Europe 73.73 44.00 22670 78.49 0.83 86.31
Iceland 2 Europe 3.40 37.30 46483 82.99 0.94 64.29
Italy 2 Europe 205.86 47.90 35220 83.51 0.88 85.42
El Salvador 2 North America 307.81 27.60 7292 73.32 0.67 91.07
Peru 2 South America 25.13 29.10 12237 76.74 0.75 86.31
Slovakia 2 Europe 113.13 41.20 30155 77.54 0.86 -
Cyprus 2 Europe 127.66 37.30 32415 80.98 0.87 89.29
Iran 2 Asia 49.83 32.40 19083 76.68 0.80 63.99
Cambodia 2 Asia 90.67 25.60 3645 69.82 0.58 51.79
Kuwait 2 Asia 232.13 33.70 65531 75.49 0.80 86.90
Portugal 2 Europe 112.37 46.20 27937 82.05 0.85 81.55
United Arab Emirates 2 Asia 112.44 34.00 67293 77.97 0.86 86.31
Djibouti 2 Africa 41.29 25.40 2705 67.11 0.48 82.14
Equatorial Guinea 2 Africa 45.19 22.40 22605 58.74 0.59 -
Israel 2 Asia 402.61 30.60 33132 82.97 0.90 89.88
South Korea 2 Asia 527.97 43.40 35938 83.03 0.90 76.19
Maldives 2 Asia 1454.43 30.60 15184 78.92 0.72 -
Bahrain 2 Asia 1935.91 32.40 43291 77.29 0.85 80.36
United Kingdom 2 Europe 272.90 40.80 39753 81.32 0.92 74.70
Philippines 2 Asia 351.87 25.20 7599 71.23 0.70 85.12
Moldova 2 Europe 123.66 37.60 5190 71.90 0.70 75.00
Macedonia 2 Europe 82.60 39.10 13111 75.80 0.76 -
Finland 2 Europe 18.14 42.80 40586 81.91 0.92 56.55
Malta 2 Europe 1454.04 42.40 36513 82.53 0.88 -
Malaysia 2 Asia 96.25 29.90 26808 76.16 0.80 81.85
Cuba 2 North America 110.41 43.10 0 78.80 0.78 82.14
Mali 2 Africa 15.20 16.40 2014 59.31 0.43 66.67
Oman 2 Asia 14.98 30.70 37961 77.86 0.82 88.69
Saudi Arabia 2 Asia 15.32 31.90 49045 75.13 0.85 87.50
France 2 Europe 122.58 42.00 38606 82.66 0.90 79.17
Iraq 2 Asia 88.13 20.00 15664 70.60 0.69 82.14
Norway 2 Europe 14.46 39.70 64800 82.40 0.95 69.64
Senegal 2 Africa 82.33 18.70 2471 67.94 0.51 70.83
Turkey 2 Asia 104.91 31.60 25129 77.69 0.79 78.87
Trinidad and Tobago 2 North America 266.89 36.20 28763 73.51 0.78 82.74
Georgia 2 Asia 65.03 38.70 9745 73.77 0.78 85.12
Taiwan 2 Asia 0.00 42.20 - 80.46 - 44.64
Ukraine 2 Europe 77.39 41.40 7894 72.06 0.75 79.76
Venezuela 2 South America 36.25 29.00 16745 72.06 0.76 77.98
D. R. of Congo 2 Africa 35.88 17.00 808 60.68 0.46 71.13
Czech Republic 2 Europe 137.18 43.30 32606 79.38 0.89 84.52
Indonesia 2 Asia 145.73 29.30 11189 71.72 0.69 68.15
Sweden 2 Europe 24.72 41.00 46949 82.80 0.93 55.36
South Africa 2 Africa 46.75 27.30 12295 64.13 0.70 84.52
Cameroon 3 Africa 50.89 18.80 3365 59.29 0.56 59.52
Ethiopia 3 Africa 104.96 19.80 1730 66.60 0.46 70.24
Latvia 3 Europe 31.21 43.90 25064 75.29 0.85 64.88
Montenegro 3 Europe 46.28 39.10 16409 76.88 0.81 -
Pakistan 3 Asia 255.57 23.50 5035 67.27 0.56 77.38
Panama 3 North America 55.13 29.70 22267 78.51 0.79 85.71
Tunisia 3 Africa 74.23 32.70 10849 76.70 0.74 76.19
Uzbekistan 3 Asia 76.13 28.20 6253 71.72 0.71 83.04
Kosovo 3 Europe 168.16 - 9796 71.95 - 79.76
Table 7.  Countries' data. Source: own construction based on OWID data. Reference: (7): Max containment and health index; (8): Max economic index; (9): Testing policy; (10): Contact tracing; (11): Access health and quality; (12): Total deaths per million at December 1st, 2020
Country Cluster Continent (7) (8) (9) (10) (11) (12)
Uruguay 1 South America 61.11 87.50 3 1 72.00 22.45
Azerbaijan 1 Asia 92.36 50.00 2 2 64.50 141.33
Burkina Faso 1 Africa 84.72 - 1 2 42.90 3.25
Belgium 1 Europe 75.00 100.00 2 2 87.90 1448.37
Bosnia&Herzegovina 1 Europe 81.25 37.50 2 0 78.20 831.20
Bolivia 1 South America 81.25 50.00 1 1 59.20 767.84
Bangladesh 1 Asia 88.19 75.00 2 1 51.70 40.53
China 1 Asia 85.42 62.50 3 2 74.20 3.30
Switzerland 1 Europe 61.81 62.50 2 2 91.80 570.79
Germany 1 Europe 74.31 62.50 3 2 86.40 205.02
Dominica 1 North America 82.64 75.00 3 2 58.10 0.00
Dominican Republic 1 North America 90.97 25.00 2 1 62.50 215.07
Andorra 1 Europe 67.36 100.00 2 1 94.60 983.63
Algeria 1 Africa 83.33 62.50 1 0 63.70 55.80
Ghana 1 Africa 81.25 50.00 3 2 49.70 10.40
Spain 1 Europe 76.39 87.50 2 1 89.60 973.40
Greece 1 Europe 84.03 87.50 3 2 87.00 241.48
Guatemala 1 North America 84.03 75.00 2 0 55.70 233.21
India 1 Asia 98.96 75.00 2 2 44.80 99.73
Japan 1 Asia 52.08 75.00 2 1 89.00 16.68
Kyrgyzstan 1 Asia - - 1 1 60.40 195.43
Canada 1 North America 72.22 75.00 3 1 87.60 324.01
Kenya 1 Africa 87.50 50.00 3 1 48.70 27.41
Armenia 1 Asia - - - - 67.50 740.07
Barbados 1 North America 84.72 62.50 2 2 66.80 24.36
Kazakhstan 1 Asia 85.76 37.50 3 2 61.10 129.63
Slovenia 1 Europe 85.42 75.00 2 2 87.40 716.71
United States 1 North America 76.39 62.50 3 1 81.30 817.64
Liechtenstein 1 Europe - - - - - 419.54
Madagascar 1 Africa 78.47 50.00 1 1 43.70 9.06
Bulgaria 1 Europe 72.22 87.50 1 2 71.40 602.73
Jamaica 1 North America 78.47 50.00 1 1 63.70 87.13
Lebanon 1 Asia 81.25 25.00 2 1 80.00 151.35
Chile 1 South America 83.68 100.00 2 2 76.00 807.17
Mexico 1 North America 76.04 75.00 1 1 62.60 828.07
Morocco 1 Africa 88.19 75.00 3 1 61.30 160.25
Sri Lanka 1 Asia 88.89 50.00 2 2 72.80 5.70
Mongolia 1 Asia 84.03 75.00 2 2 58.50 0.00
Nigeria 1 Africa 80.56 62.50 1 2 51.30 5.71
Colombia 1 South America 90.28 75.00 2 2 67.80 725.86
Netherlands 1 Europe 67.36 62.50 2 2 89.50 555.48
New Zealand 1 Oceania 86.11 87.50 2 2 86.20 5.18
Afghanistan 1 Asia 76.39 25.00 1 1 32.50 46.16
Poland 1 Europe 73.61 75.00 2 2 79.60 465.01
Paraguay 1 South America 80.56 75.00 1 2 60.40 248.30
Palestine 1 Asia 79.17 50.00 1 1 70.50 146.43
Qatar 1 Asia 87.50 62.50 3 2 85.20 82.61
Romania 1 Europe 79.86 87.50 2 1 74.40 599.35
Rwanda 1 Africa 90.97 62.50 3 2 47.80 3.78
Egypt 1 Africa 81.25 75.00 2 2 61.00 65.14
Russia 1 Europe 80.56 62.50 3 2 71.70 274.44
Thailand 1 Asia 76.74 100.00 2 2 70.80 0.86
Togo 1 Africa 72.22 75.00 1 0 44.30 7.73
Vietnam 1 Asia 93.06 50.00 3 2 66.30 0.36
Singapore 1 Asia 86.11 100.00 2 2 86.30 4.96
Zambia 1 Africa 70.49 25.00 1 2 41.60 19.42
Albania 2 Europe 77.08 75.00 1 2 78.20 285.64
Australia 2 Oceania 83.33 75.00 3 2 89.80 35.61
Austria 2 Europe 84.72 100.00 3 2 88.20 369.18
Brunei 2 Asia 55.56 50.00 2 1 70.00 6.86
Brazil 2 South America 81.94 50.00 2 2 64.90 817.73
Cote d'Ivoire 2 Africa 75.35 75.00 2 2 42.40 5.00
Argentina 2 South America 92.36 75.00 1 2 68.40 861.32
Denmark 2 Europe 65.97 100.00 3 2 85.70 146.06
Belarus 2 Europe 35.42 - 3 2 74.40 123.40
Estonia 2 Europe 63.89 87.50 2 0 81.40 91.22
Costa Rica 2 North America 72.22 50.00 1 2 72.90 339.80
Honduras 2 North America 88.19 87.50 1 1 53.90 294.61
Serbia 2 Europe 86.11 62.50 1 2 75.40 242.78
Hungary 2 Europe 72.22 87.50 1 2 79.60 515.20
Ireland 2 Europe 79.17 100.00 2 2 88.40 419.01
Croatia 2 Europe 86.11 87.50 3 2 81.60 453.32
Iceland 2 Europe 60.42 100.00 3 2 93.60 79.12
Italy 2 Europe 91.32 75.00 2 2 88.70 932.18
El Salvador 2 North America 93.75 75.00 3 1 64.40 172.67
Peru 2 South America 88.19 75.00 2 2 69.60 1090.81
Slovakia 2 Europe - - 1 2 78.60 158.99
Cyprus 2 Europe 87.50 100.00 3 2 85.30 55.94
Iran 2 Asia 68.06 62.50 2 0 71.10 578.95
Cambodia 2 Asia 60.42 62.50 1 1 50.70 0.00
Kuwait 2 Asia 95.14 37.50 2 2 82.00 206.30
Portugal 2 Europe 82.64 75.00 3 1 84.50 448.87
United Arab Emirates 2 Asia 92.36 50.00 3 2 72.20 58.24
Djibouti 2 Africa 93.75 12.50 2 2 44.70 61.74
Equatorial Guinea 2 Africa - - - - 48.40 60.59
Israel 2 Asia 88.19 100.00 1 2 85.50 332.39
South Korea 2 Asia 80.56 50.00 3 2 85.80 10.26
Maldives 2 Asia - - - - 75.50 86.95
Bahrain 2 Asia 79.17 87.50 3 2 79.00 200.40
United Kingdom 2 Europe 70.49 100.00 2 2 84.60 871.28
Philippines 2 Asia 88.89 75.00 2 2 52.00 76.82
Moldova 2 Europe 81.25 37.50 2 2 73.10 575.86
Macedonia 2 Europe - - - - 76.00 860.14
Finland 2 Europe 57.64 75.00 2 1 89.60 72.01
Malta 2 Europe - - - - 85.10 319.34
Malaysia 2 Asia 82.99 75.00 3 2 66.60 11.22
Cuba 2 North America 87.50 62.50 1 2 73.50 12.01
Mali 2 Africa 69.44 50.00 1 2 45.60 7.90
Oman 2 Asia 93.06 62.50 2 1 77.10 280.03
Saudi Arabia 2 Asia 91.67 62.50 3 2 79.40 169.67
France 2 Europe 82.99 100.00 3 2 87.90 809.23
Iraq 2 Asia 90.28 50.00 2 1 60.10 305.95
Norway 2 Europe 66.67 87.50 2 2 90.50 61.61
Senegal 2 Africa 72.22 75.00 2 2 44.40 19.89
Turkey 2 Asia 77.43 87.50 2 2 76.20 165.24
Trinidad and Tobago 2 North America 84.03 75.00 1 2 62.10 85.75
Georgia 2 Asia 93.06 37.50 2 2 62.10 326.63
Taiwan 2 Asia 45.83 37.50 3 2 77.60 0.29
Ukraine 2 Europe 86.81 37.50 2 2 72.70 296.38
Venezuela 2 South America 82.64 50.00 3 0 64.70 31.69
D. R. of Congo 2 Africa 74.65 50.00 1 1 40.40 3.74
Czech Republic 2 Europe 81.94 100.00 2 2 84.80 785.04
Indonesia 2 Asia 75.35 37.50 1 1 49.20 62.45
Sweden 2 Europe 58.33 62.50 2 1 90.50 673.12
South Africa 2 Africa 86.11 75.00 3 2 52.00 364.94
Cameroon 3 Africa 69.44 37.50 2 1 44.40 16.61
Ethiopia 3 Africa 73.61 50.00 1 1 44.20 14.87
Latvia 3 Europe 60.07 100.00 1 2 77.70 111.34
Montenegro 3 Europe - - - - 80.70 802.47
Pakistan 3 Asia 81.94 75.00 2 1 43.10 36.97
Panama 3 North America 87.50 75.00 2 1 64.40 718.00
Tunisia 3 Africa 76.39 75.00 1 1 70.10 275.84
Uzbekistan 3 Asia 88.54 50.00 1 2 62.30 18.26
Kosovo 3 Europe 76.39 100.00 1 1 - 530.84
Country Cluster Continent (7) (8) (9) (10) (11) (12)
Uruguay 1 South America 61.11 87.50 3 1 72.00 22.45
Azerbaijan 1 Asia 92.36 50.00 2 2 64.50 141.33
Burkina Faso 1 Africa 84.72 - 1 2 42.90 3.25
Belgium 1 Europe 75.00 100.00 2 2 87.90 1448.37
Bosnia&Herzegovina 1 Europe 81.25 37.50 2 0 78.20 831.20
Bolivia 1 South America 81.25 50.00 1 1 59.20 767.84
Bangladesh 1 Asia 88.19 75.00 2 1 51.70 40.53
China 1 Asia 85.42 62.50 3 2 74.20 3.30
Switzerland 1 Europe 61.81 62.50 2 2 91.80 570.79
Germany 1 Europe 74.31 62.50 3 2 86.40 205.02
Dominica 1 North America 82.64 75.00 3 2 58.10 0.00
Dominican Republic 1 North America 90.97 25.00 2 1 62.50 215.07
Andorra 1 Europe 67.36 100.00 2 1 94.60 983.63
Algeria 1 Africa 83.33 62.50 1 0 63.70 55.80
Ghana 1 Africa 81.25 50.00 3 2 49.70 10.40
Spain 1 Europe 76.39 87.50 2 1 89.60 973.40
Greece 1 Europe 84.03 87.50 3 2 87.00 241.48
Guatemala 1 North America 84.03 75.00 2 0 55.70 233.21
India 1 Asia 98.96 75.00 2 2 44.80 99.73
Japan 1 Asia 52.08 75.00 2 1 89.00 16.68
Kyrgyzstan 1 Asia - - 1 1 60.40 195.43
Canada 1 North America 72.22 75.00 3 1 87.60 324.01
Kenya 1 Africa 87.50 50.00 3 1 48.70 27.41
Armenia 1 Asia - - - - 67.50 740.07
Barbados 1 North America 84.72 62.50 2 2 66.80 24.36
Kazakhstan 1 Asia 85.76 37.50 3 2 61.10 129.63
Slovenia 1 Europe 85.42 75.00 2 2 87.40 716.71
United States 1 North America 76.39 62.50 3 1 81.30 817.64
Liechtenstein 1 Europe - - - - - 419.54
Madagascar 1 Africa 78.47 50.00 1 1 43.70 9.06
Bulgaria 1 Europe 72.22 87.50 1 2 71.40 602.73
Jamaica 1 North America 78.47 50.00 1 1 63.70 87.13
Lebanon 1 Asia 81.25 25.00 2 1 80.00 151.35
Chile 1 South America 83.68 100.00 2 2 76.00 807.17
Mexico 1 North America 76.04 75.00 1 1 62.60 828.07
Morocco 1 Africa 88.19 75.00 3 1 61.30 160.25
Sri Lanka 1 Asia 88.89 50.00 2 2 72.80 5.70
Mongolia 1 Asia 84.03 75.00 2 2 58.50 0.00
Nigeria 1 Africa 80.56 62.50 1 2 51.30 5.71
Colombia 1 South America 90.28 75.00 2 2 67.80 725.86
Netherlands 1 Europe 67.36 62.50 2 2 89.50 555.48
New Zealand 1 Oceania 86.11 87.50 2 2 86.20 5.18
Afghanistan 1 Asia 76.39 25.00 1 1 32.50 46.16
Poland 1 Europe 73.61 75.00 2 2 79.60 465.01
Paraguay 1 South America 80.56 75.00 1 2 60.40 248.30
Palestine 1 Asia 79.17 50.00 1 1 70.50 146.43
Qatar 1 Asia 87.50 62.50 3 2 85.20 82.61
Romania 1 Europe 79.86 87.50 2 1 74.40 599.35
Rwanda 1 Africa 90.97 62.50 3 2 47.80 3.78
Egypt 1 Africa 81.25 75.00 2 2 61.00 65.14
Russia 1 Europe 80.56 62.50 3 2 71.70 274.44
Thailand 1 Asia 76.74 100.00 2 2 70.80 0.86
Togo 1 Africa 72.22 75.00 1 0 44.30 7.73
Vietnam 1 Asia 93.06 50.00 3 2 66.30 0.36
Singapore 1 Asia 86.11 100.00 2 2 86.30 4.96
Zambia 1 Africa 70.49 25.00 1 2 41.60 19.42
Albania 2 Europe 77.08 75.00 1 2 78.20 285.64
Australia 2 Oceania 83.33 75.00 3 2 89.80 35.61
Austria 2 Europe 84.72 100.00 3 2 88.20 369.18
Brunei 2 Asia 55.56 50.00 2 1 70.00 6.86
Brazil 2 South America 81.94 50.00 2 2 64.90 817.73
Cote d'Ivoire 2 Africa 75.35 75.00 2 2 42.40 5.00
Argentina 2 South America 92.36 75.00 1 2 68.40 861.32
Denmark 2 Europe 65.97 100.00 3 2 85.70 146.06
Belarus 2 Europe 35.42 - 3 2 74.40 123.40
Estonia 2 Europe 63.89 87.50 2 0 81.40 91.22
Costa Rica 2 North America 72.22 50.00 1 2 72.90 339.80
Honduras 2 North America 88.19 87.50 1 1 53.90 294.61
Serbia 2 Europe 86.11 62.50 1 2 75.40 242.78
Hungary 2 Europe 72.22 87.50 1 2 79.60 515.20
Ireland 2 Europe 79.17 100.00 2 2 88.40 419.01
Croatia 2 Europe 86.11 87.50 3 2 81.60 453.32
Iceland 2 Europe 60.42 100.00 3 2 93.60 79.12
Italy 2 Europe 91.32 75.00 2 2 88.70 932.18
El Salvador 2 North America 93.75 75.00 3 1 64.40 172.67
Peru 2 South America 88.19 75.00 2 2 69.60 1090.81
Slovakia 2 Europe - - 1 2 78.60 158.99
Cyprus 2 Europe 87.50 100.00 3 2 85.30 55.94
Iran 2 Asia 68.06 62.50 2 0 71.10 578.95
Cambodia 2 Asia 60.42 62.50 1 1 50.70 0.00
Kuwait 2 Asia 95.14 37.50 2 2 82.00 206.30
Portugal 2 Europe 82.64 75.00 3 1 84.50 448.87
United Arab Emirates 2 Asia 92.36 50.00 3 2 72.20 58.24
Djibouti 2 Africa 93.75 12.50 2 2 44.70 61.74
Equatorial Guinea 2 Africa - - - - 48.40 60.59
Israel 2 Asia 88.19 100.00 1 2 85.50 332.39
South Korea 2 Asia 80.56 50.00 3 2 85.80 10.26
Maldives 2 Asia - - - - 75.50 86.95
Bahrain 2 Asia 79.17 87.50 3 2 79.00 200.40
United Kingdom 2 Europe 70.49 100.00 2 2 84.60 871.28
Philippines 2 Asia 88.89 75.00 2 2 52.00 76.82
Moldova 2 Europe 81.25 37.50 2 2 73.10 575.86
Macedonia 2 Europe - - - - 76.00 860.14
Finland 2 Europe 57.64 75.00 2 1 89.60 72.01
Malta 2 Europe - - - - 85.10 319.34
Malaysia 2 Asia 82.99 75.00 3 2 66.60 11.22
Cuba 2 North America 87.50 62.50 1 2 73.50 12.01
Mali 2 Africa 69.44 50.00 1 2 45.60 7.90
Oman 2 Asia 93.06 62.50 2 1 77.10 280.03
Saudi Arabia 2 Asia 91.67 62.50 3 2 79.40 169.67
France 2 Europe 82.99 100.00 3 2 87.90 809.23
Iraq 2 Asia 90.28 50.00 2 1 60.10 305.95
Norway 2 Europe 66.67 87.50 2 2 90.50 61.61
Senegal 2 Africa 72.22 75.00 2 2 44.40 19.89
Turkey 2 Asia 77.43 87.50 2 2 76.20 165.24
Trinidad and Tobago 2 North America 84.03 75.00 1 2 62.10 85.75
Georgia 2 Asia 93.06 37.50 2 2 62.10 326.63
Taiwan 2 Asia 45.83 37.50 3 2 77.60 0.29
Ukraine 2 Europe 86.81 37.50 2 2 72.70 296.38
Venezuela 2 South America 82.64 50.00 3 0 64.70 31.69
D. R. of Congo 2 Africa 74.65 50.00 1 1 40.40 3.74
Czech Republic 2 Europe 81.94 100.00 2 2 84.80 785.04
Indonesia 2 Asia 75.35 37.50 1 1 49.20 62.45
Sweden 2 Europe 58.33 62.50 2 1 90.50 673.12
South Africa 2 Africa 86.11 75.00 3 2 52.00 364.94
Cameroon 3 Africa 69.44 37.50 2 1 44.40 16.61
Ethiopia 3 Africa 73.61 50.00 1 1 44.20 14.87
Latvia 3 Europe 60.07 100.00 1 2 77.70 111.34
Montenegro 3 Europe - - - - 80.70 802.47
Pakistan 3 Asia 81.94 75.00 2 1 43.10 36.97
Panama 3 North America 87.50 75.00 2 1 64.40 718.00
Tunisia 3 Africa 76.39 75.00 1 1 70.10 275.84
Uzbekistan 3 Asia 88.54 50.00 1 2 62.30 18.26
Kosovo 3 Europe 76.39 100.00 1 1 - 530.84
[1]

Erick Limas. An application of minimal spanning trees and hierarchical trees to the study of Latin American exchange rates. Journal of Dynamics & Games, 2019, 6 (2) : 131-148. doi: 10.3934/jdg.2019010

[2]

Jorge Rebaza. On a model of COVID-19 dynamics. Electronic Research Archive, 2021, 29 (2) : 2129-2140. doi: 10.3934/era.2020108

[3]

Hailiang Liu, Xuping Tian. Data-driven optimal control of a seir model for COVID-19. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021093

[4]

Tailei Zhang, Zhimin Li. Analysis of COVID-19 epidemic transmission trend based on a time-delayed dynamic model. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021088

[5]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021, 8 (3) : 167-188. doi: 10.3934/jdg.2021004

[6]

Tao Zheng, Yantao Luo, Xinran Zhou, Long Zhang, Zhidong Teng. Spatial dynamic analysis for COVID-19 epidemic model with diffusion and Beddington-DeAngelis type incidence. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021154

[7]

Nitu Kumari, Sumit Kumar, Sandeep Sharma, Fateh Singh, Rana Parshad. Basic reproduction number estimation and forecasting of COVID-19: A case study of India, Brazil and Peru. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021170

[8]

Karl Petersen, Ibrahim Salama. Entropy on regular trees. Discrete & Continuous Dynamical Systems, 2020, 40 (7) : 4453-4477. doi: 10.3934/dcds.2020186

[9]

Lluís Alsedà, David Juher, Deborah M. King, Francesc Mañosas. Maximizing entropy of cycles on trees. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3237-3276. doi: 10.3934/dcds.2013.33.3237

[10]

Sergei Avdonin, Pavel Kurasov. Inverse problems for quantum trees. Inverse Problems & Imaging, 2008, 2 (1) : 1-21. doi: 10.3934/ipi.2008.2.1

[11]

Lluís Alsedà, David Juher, Francesc Mañosas. Forward triplets and topological entropy on trees. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021131

[12]

Monica Pragliola, Daniela Calvetti, Erkki Somersalo. Overcomplete representation in a hierarchical Bayesian framework. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2021039

[13]

Sergei Avdonin, Julian Edward. An inverse problem for quantum trees with observations at interior vertices. Networks & Heterogeneous Media, 2021, 16 (2) : 317-339. doi: 10.3934/nhm.2021008

[14]

Bertrand Maury, Delphine Salort, Christine Vannier. Trace theorems for trees and application to the human lungs. Networks & Heterogeneous Media, 2009, 4 (3) : 469-500. doi: 10.3934/nhm.2009.4.469

[15]

Xavier Dubois de La Sablonière, Benjamin Mauroy, Yannick Privat. Shape minimization of the dissipated energy in dyadic trees. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 767-799. doi: 10.3934/dcdsb.2011.16.767

[16]

Thierry Coulbois. Fractal trees for irreducible automorphisms of free groups. Journal of Modern Dynamics, 2010, 4 (2) : 359-391. doi: 10.3934/jmd.2010.4.359

[17]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[18]

Chris Bernhardt. Vertex maps for trees: Algebra and periods of periodic orbits. Discrete & Continuous Dynamical Systems, 2006, 14 (3) : 399-408. doi: 10.3934/dcds.2006.14.399

[19]

Laurent Di Menza, Virginie Joanne-Fabre. An age group model for the study of a population of trees. Discrete & Continuous Dynamical Systems - S, 2021, 14 (8) : 2823-2835. doi: 10.3934/dcdss.2020464

[20]

Min Ye, Alexander Barg. Polar codes for distributed hierarchical source coding. Advances in Mathematics of Communications, 2015, 9 (1) : 87-103. doi: 10.3934/amc.2015.9.87

 Impact Factor: 

Article outline

Figures and Tables

[Back to Top]