\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Relative entropy and envy-free allocation

  • * Corresponding author: Lonnie Turpin, Jr

    * Corresponding author: Lonnie Turpin, Jr 
Abstract Full Text(HTML) Related Papers Cited by
  • In this brief work, we study a basic environment consisting of a single receiver taking actions based on information (called signals) from multiple senders. The receiver is a rational Bayesian who uses optimization as a mechanism to convert the signals to actions. The conversions are gambles as the actions must be taken before signal reception. Formal comparisons of differences between the solution sets of both prior and posterior optimization frameworks and their respective probability distributions are given. The difference in probability distributions (denoted by relative entropy) presents a useful tool for modifying the receiver's level of risk. We then construct a simple scenario where the receiver acts as a proxy in a Shapely-Shubik-style game with two agents focusing on different objectives under a common risk level. Acting on their behalf, an envy-free allocation mechanism is presented to simultaneously satisfy each using the asymmetric assignment model when findings show the objectives require identical actions.

    Mathematics Subject Classification: Primary: 91A05; Secondary: 90C10.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • [1] R. Adler and R. Benbunan-Fich, Juggling on a high wire: multitasking effects on performance, International Journal of Human-Computer Studies, 70 (2012), 156-168. 
    [2] M. Basseville, Distance measures for signal processing and pattern recognition, Signal Processing, 18 (1989), 349-369.  doi: 10.1016/0165-1684(89)90079-0.
    [3] D. P. Bertsekas and D. A. Castanon, A forward/reverse auction algorithm for asymmetric assignment problems, Comput. Optim. Appl., 1 (1992), 277-297.  doi: 10.1007/BF00249638.
    [4] A. Bhattacharyya, On a measure of divergence between two multinomial populations, Sankhyā: The Indian Journal of Statistics, 7 (1946), 401-406. 
    [5] K. BorchThe Economics of Uncertainty, Princeton University Press, New Jersey, 1968. 
    [6] S. ChoiS. Cha and C. Tappert, A survey of binary similarity and distance measures, Journal of Systemics, Cybernetics and Informatics, 8 (2010), 43-48. 
    [7] T. M. Cover and  J. A. ThomasElements of Information Theory, John Wiley & Sons, New Jersey, 2006. 
    [8] C. DaskalakisI. Diakonikolas and R. A. Servedio, Learning Poisson binomial distributions, Algorithmica, 72 (2015), 316-357.  doi: 10.1007/s00453-015-9971-3.
    [9] R. W. Hamming, Error detecting and error correcting codes, Bell System Tech. J., 29 (1950), 147-160.  doi: 10.1002/j.1538-7305.1950.tb00463.x.
    [10] L. Hansen and T. Sargent, Robust control and model uncertainty, The American Economic Review, 91 (2001), 60-66. 
    [11] D. Hickson, Decision-making at the top of organizations, Annual Review of Sociology, 13 (1987), 165-192. 
    [12] R. Kass and L. Wasserman, The selection of prior distributions by formal rules, Journal of the American Statistical Association, 91 (1996), 1343-1370. 
    [13] M. KearnsY. MansourD. RonR. RubinfeldR. Schapire and L. Sellie, On the learnability of discrete distributions, Proceedings of the Twenty-sixth Annual ACM Symposium on Theory of Computing, (1994), 273-282. 
    [14] S. Kosub, A note on the triangle inequality for the Jaccard distance, Pattern Recognition Letters, 120 (2019), 36-38. 
    [15] S. Kullback and R. A. Leibler, On information and sufficiency, Ann. Math. Statistics, 22 (1951), 79-86.  doi: 10.1214/aoms/1177729694.
    [16] R. MarrisThe Economic Theory of 'Managerial' Capitalism, Palgrave Macmillan, London, 1964. 
    [17] A. Metrick and B. Polak, Fictitious play in $2 \times 2$ games: A geometric proof of convergence, Economic Theory, 4 (1994), 923-933.  doi: 10.1007/BF01213819.
    [18] H. MoulinCooperative Microeconomics: A Game-Theoretic Introduction, Princeton University Press, New Jersey, 1995. 
    [19] T. NguyenA. Peivandi and R. Vohra, Assignment problems with complementarities, J. Econom. Theory, 165 (2016), 209-241.  doi: 10.1016/j.jet.2016.04.006.
    [20] R. Rosenberg, Profit constrained revenue maximization: Note, American Economic Review, 61 (1971), 208-209. 
    [21] L. S. Shapley and M. Shubik, The assignment game Ⅰ: The core, Internat. J. Game Theory, 1 (1972), 111-130.  doi: 10.1007/BF01753437.
    [22] T. Strzalecki, Axiomatic foundations of multiplier preferences, Econometrica, 79 (2011), 47-73.  doi: 10.3982/ECTA8155.
    [23] F. Topsøe, Some inequalities for information divergence and related measures of discrimination, IEEE Trans. Inform. Theory, 46 (2000), 1602-1609.  doi: 10.1109/18.850703.
    [24] H. Tuy, Monotonic optimization: Problems and solution approaches, SIAM J. Optim., 11 (2000), 464-494.  doi: 10.1137/S1052623499359828.
    [25] G. Yarrow, Managerial utility maximization under uncertainty, Economica, 40 (1973), 155-173. 
  • 加载中
SHARE

Article Metrics

HTML views(749) PDF downloads(163) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return