\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Early warning indicators of epidemics on a coupled behaviour-disease model with vaccine hesitance and incomplete data

  • *Corresponding author: Brendon Phillips

    *Corresponding author: Brendon Phillips 

This research was funded by an NSERC Discovery Grant to Chris T. Bauch.

Abstract / Introduction Full Text(HTML) Figure(26) / Table(5) Related Papers Cited by
  • The ubiquity of hesitance sometimes defies social pressure, especially when individuals are required to make health-care decisions they deem momentous. In epidemiology, such intervention hesitance can both initiate and prolong infectious disease outbreaks, especially when paired with vaccine denial. Previous literature has yielded effective early warning signals (EWS) of disease outbreak and vaccine crisis for coupled behaviour-infection systems; these EWS arise from characteristic phenomena undergone by model dynamics during critical transition(s). In this study, we investigate the resilience of these EWS to the incorporation of a destructive delay to vaccination decisions. Simulations were conducted on a static small world network, using a model coupling an $ SIRV_p $ infection model with a social dynamic resembling a voting game with abstention. We find that some of the EWS tested retain their efficacy despite fundamental differences in model behaviour. We also find that these EWS (both pair- and cluster-based) can be reliably used while observing as little as $ 60\% $ of the total network with relatively small loss of accuracy. These findings not only show the resilience of these EWS, but also allow for potential expansion of use cases and reduction in computational resource requirements.

    Mathematics Subject Classification: Primary: 92D30, 91D30, 91B69, 90C35, 62H20; Secondary: 68Q87, 92B05, 60K35, 91C20, 62H11.

    Citation:

    \begin{equation} \\ \end{equation}
  • 加载中
  • Figure 1.  Diagrams showing the epidemiological and opinion dynamics of the model

    Figure 2.  Implementation of the model dynamics used for each stochastic realisation. Red blocks represent loops run for each node in the network per time step. Yellow blocks are executed only once per realisation. Blue diamonds represent binary decisions, and grey boxes represent simple instructions

    Figure 3.  Diagrams of the trends of overall model behaviour and intertransition distance, and the locations of the social and infection transitions with respect to the sampling proportion $ \beta $. (a) Unsteady trend of the intertransition distance $ K_p-K_s $ (purple), with the inset graph showing the estimated locations of $ K_s^1 $ (red) and $ K_p^1 $ (blue). (b) Trends of model variables of the social and infection dynamics for $ \sigma = 0 $ (left) and $ \sigma = 0.25 $ (right). Hesitance persists in the simulation across all strengths of the social norm $ \sigma $. (c) Estimated locations of the social and infection transitions $ K_s ^\beta $ and $ K_p^\beta $ drift as the proportion of agents randomly sampled $ \beta $ changes

    Figure 4.  Changes in the trends of the $ \kappa $-series of the mutual information statistic $ \langle\mathcal{M}\rangle $, the probabilities of having an infected neighbour $ \big\langle {\Gamma_{{\ast}}}\big\rangle $ and the numbers of opinion changes $ \big\langle {\!\Theta_{{\ast}}\!}\big\rangle $ predict transitions in the infection ($ K_p^1 $, dashed vertical line) and social ($ K_s^1 $, dotted vertical black line) dynamics for both social norms $ \sigma = 0 $ (left panels) and $ \sigma = 0.25 $ (right panels). (a) Trend of the mutual information statistic $ \langle\mathcal{M}\rangle $. (b) Probability of hesitant ($ \big\langle {\Gamma_{{H}}}\big\rangle $), pro-vaccine ($ \big\langle {\Gamma_{{N}}}\big\rangle $) and anti-vaccine ($ \big\langle {\Gamma_{{V}}}\big\rangle $) agents of having an infected neighbour. (c) Number of opinion changes committed by hesitant ($ \big\langle {\!\Theta_{{H}}\!}\big\rangle $), anti-vaccine ($ \big\langle {\!\Theta_{{N}}\!}\big\rangle $ and pro-vaccine ($ \big\langle {\!\Theta_{{V}}\!}\big\rangle $) agents, and the total number of changes $ \big\langle {\!\Theta_{{\Sigma}}\!}\big\rangle $

    Figure 5.  Lead distances of non-connectivity-based EWS explored in the study, obtained by applying the SNHT. Bar charts on the right of the panels show the proportion of $ \sigma $ values for which each test gave the largest lead distance of all EWS tested. (a) Lead distances of the mutual information statistic $ \langle\mathcal{M}\rangle $ under the Lanzante, Pettitt, Buishand range and standard normal homogeneity tests. (b) Probabilities of hesitant ($ \big\langle {\Gamma_{{H}}}\big\rangle $), pro- ($ \big\langle {\Gamma_{{V}}}\big\rangle $) and anti-vaccine ($ \big\langle {\Gamma_{{N}}}\big\rangle $) agents having an infected neighbour. (c) Opinion changes committed by pro-vaccine ($ V_s $), anti-vaccine ($ N $) and hesitant ($ H $) agents

    Figure 6.  Sudden changes in trend of the sizes ($ \!|Z_{{\ast}}| $) and numbers ($ \#Z_{{\ast}} $) of opinion communities with respect to the social norm $ \sigma $ strongly signal upcoming transitions in the model dynamics. Social norm $ \sigma = 0 $ for panels on the left and $ \sigma = 0.25 $ for panels on the right. (a) Sizes of pro-vaccine communities. (b) Sizes of anti-vaccine communities. (c) Sizes of communities of hesitant agents. (d)

    Figure 7.  Trends of the lead distances of connectivity-based EWS under the SNHT with respect to the social norm $ \sigma $. Bar charts on the right of the panels show the proportion of $ \sigma $ values for which each test gave the largest lead distance of all EWS tested. Quite a few indicators perform poorly, with near-zero lead distances. (a) Lead distances of the mean sizes of opinion communities. (b) Lead distances of the mean sizes of opinion echo chambers. (c) Lead distances yielded by the numbers of communities and chambers on the network. (d) Trends in the lead distances of the various join count statistics. Bar charts on the right give the percentage of social norm $ \sigma $ values for which the EWS gave the largest lead distance of all EWS

    Figure 8.  Values of the global clustering coefficient $ \big\langle {C_{{\ast}}}\big\rangle $, triad census $ \big\langle {\!\Delta_{{\ast}}\!}\big\rangle $ and opinion network diameter $ \big\langle {\Omega_{{\ast}}}\big\rangle $ with respect to the perceived vaccine risk $ \kappa $. Social norm $ \sigma = 0 $ for the panels on the left and $ \sigma = 0.25 $ for the panels on the right. (a) Clustering coefficient of the various opinion networks. (b) Number of opinion triads on the network. (c) Diameters of the various opinion networks

    Figure 9.  Trends in the lead distances given by other connectivity-based EWS investigated using the SNHT. (a) Lead distances given by the clustering coefficients of the various opinion networks. (b) Lead distances given by the numbers of opinion triads. (c) Lead distances of the diameters of the various opinion networks

    Figure 10.  Side-by-side bar charts comparing the relative performance of each EWS under the SNHT. Green bars give the proportion of $ \sigma $ values for which the EWS gave the maximum lead distance of all EWS and the red bars give the proportion for which the lead distances were minima, failures or undefined

    Figure 11.  Heat map plots showing the ensemble means of model variables with respect to the social norm $ \sigma $ and the perceived vaccine risk $ \kappa $. All agents were observed ($ \beta = 1 $). (a) $ \big\langle H\big\rangle $ (hesitant agents). (b) $ \big\langle N\big\rangle $ (anti-vaccine agents). (c) $ \big\langle {V_s}\big\rangle $ (pro-vaccine agents). (d) $ \big\langle {V_p}\big\rangle $ (vaccinated agents). (e) $ \big\langle {I}\big\rangle $ (infected agents). (f) $ \big\langle {S}\big\rangle $ (susceptible agents)

    Figure 12.  The dynamics of the model shows bistability about the vaccine risk $ \kappa = 0 $ for all parameter values tested. (a) Final number of recovered agents. (b) Final number of vaccinated agents. (c) Final number of susceptible agents

    Figure 13.  Locations of the physical and social transitions ($ K_p^\beta $ and $ K_s^\beta $), and trends of the intertransition distance $ K_p^\beta-K_s^\beta $ obtained by sampling different proportions $ \beta $ of agents in the network. (a) Locations of the physical ($ K_p^{0.4} $, inset, red) and social ($ K_s^{0.4} $, inset, blue) transitions found by sampling proportion $ \beta = 0.4 $ of the network. Intertransition distance $ K_p^{0.4}-K_s^{0.4} $ (purple) is shown in the foreground. (b) Locations of the physical ($ K_p^{0.6} $, inset, red) and social ($ K_s^{0.6} $, inset, blue) transitions found by sampling proportion $ \beta = 0.6 $ of the network. Intertransition distance $ K_p^{0.6}-K_s^{0.6} $ (purple) is shown in the foreground. (c) Locations of the physical ($ K_p^{0.8} $, inset, red) and social ($ K_s^{0.8} $, inset, blue) transitions found by sampling proportion $ \beta = 0.8 $ of the network. Intertransition distance $ K_p^{0.8}-K_s^{0.8} $ (purple) is shown in the foreground. (d) Locations of the physical ($ K_p^{1} $, inset, red) and social ($ K_s^{1} $, inset, blue) transitions found by sampling proportion $ \beta = 1 $ of the network. Intertransition distance $ K_p^{1}-K_s^{1} $ (purple) is shown in the foreground

    Figure 14.  Time series demonstrating the sensitivity of system dynamics to small changes in perceived vaccine risk $ \kappa $ in the absence of a social norm ($ \sigma = 0 $). Time in week (time steps) is given by $ \tau $. (a) $ [I]_{\tau\le6} $, with $ \kappa = 0.00625 $. (b) $ [I]_{\tau\le6} $, with $ \kappa = 0 $. (c) $ [I]_{\tau\le6} $, with $ \kappa = -0.0125 $. (d) $ [V_s] $, with $ \kappa = 0.05 $. (e) $ [V_s] $, with $ \kappa = 0 $. (f) $ [V_s] $, with $ \kappa = -0.025 $. (g) $ [V_p] $, with $ \kappa = 0.05 $. (h) $ [V_p] $, with $ \kappa = 0 $. (i) $ [V_p] $, with $ \kappa = -0.025 $

    Figure 15.  Grid comparing the performance of each EWS at each value of the social norm $ \sigma $ under the SNHT. Green tiles represent maximum lead distances (of all EWS), grey tiles represent intermediate lead distances, red tiles represent minimum positive lead distances (of all EWS), white tiles represent missing/undefined values, black tiles represent failures (negative lead distances) and yellow tiles indicate that all EWS gave the same lead distance

    Figure 16.  Variance in the trends of the lead times of some EWS caused by sampling a proportion $ \beta $ of the social network. (a-c) $ {\text{SNHT}}\{\langle {C_{{\ast}}^{{\beta}}} \rangle\} $, (d-f) $ {\text{SNHT}}\{\langle {\!\Delta_{{\ast}}^{{\beta}}} \rangle\} $, (g-i) $ {\text{SNHT}}\{\langle {\Omega_{{\ast}}^{{\beta}}} \rangle\} $. In all cases, $ \beta\in\{0.4, 0.6, 0.8\} $ respectively

    Figure 17.  Changes in the sizes ($ \left|{J_{{\ast}}}\right| $) and numbers ($ \big\langle {\!\#{J_{{\ast}}\!}}\big\rangle $) of echo chambers in the network warn of the transitions $ K_s^1 $ and $ K_p^1 $. Social norm $ \sigma = 0 $ for the panels on the left and $ \sigma = 0.25 $ for panels on the right. (a) Sizes of pro-vaccine echo chambers. (b) Sizes of anti-vaccine echo chambers. (c) Sizes of echo chambers of hesitant agents. (d) Numbers of different types of echo chambers on the network

    Figure 18.  Trends in the join count statistics of the network also give clear warnings of approaching social and infection transitions. Social norm $ \sigma = 0 $ for panels on the left and $ \sigma = 0.25 $ for panels on the right. (a) The proportions of all join counts on the network. (b) The proportion of $ \big\langle {N, V_s}\big\rangle $ dissimilar joins. (c) The proportions of joins involving hesitant agents

    Figure 19.  Changes in the trends of the lead times of some EWS caused by sampling a proportion $ \beta $ of the social network. (a-d) $ {\text{SNHT}}\{\langle { \mathcal M^{{\beta}}} \rangle\} $. (e-h) $ {\text{SNHT}}\!\left\{\langle {\!\Gamma_{{\ast}}^{{\beta}}} \rangle\right\} $. (i-l) $ {\text{SNHT}}\{\langle {\!\Theta_{{\ast}}^{{0.6}}} \rangle\} $. In each case, $ \beta\in\{0.4, 0.6, 0.8, 1\} $ respectively

    Figure 20.  Changes in the trends of the lead times of some EWS caused by sampling a proportion $ \beta $ of the social network. (a-c) $ {\text{SNHT}}\{\langle {|Z_{{\ast}}^{{\beta}}|} \rangle\} $, (d-f) $ {\text{SNHT}}\{\langle {|J_{{\ast}}^{{\beta}}|} \rangle\} $, (g-i) $ {\text{SNHT}}\{\langle {\#Z_{{\ast}}^{{\beta}}} \rangle\} $ and $ {\text{SNHT}}\{\langle {\#J_{{\ast}}^{{\beta}}} \rangle\} $, (j-l) $ {\text{SNHT}}\{\langle {{\ast, \ast}} \rangle^{{\beta}}\} $. In all cases, $ \beta\in\{0.4, 0.6, 0.8\} $ respectively

    Figure 21.  Grid showing the performance of EWS for each value of the social norm $ \sigma $ when $ 40\% $ of the network is sampled

    Figure 22.  Bar chart showing the summary performance of EWS with respect to the value of the social norm $ \sigma $ when $ 40\% $ of the network is sampled

    Figure 23.  Grid showing the performance of EWS for each value of the social norm $ \sigma $ when $ 60\% $ of the network is sampled

    Figure 24.  Bar chart showing the summary performance of EWS for each value of the social norm $ \sigma $ when $ 60\% $ of the network is sampled

    Figure 25.  Grid showing the performance of EWS for each value of the social norm $ \sigma $ when $ 80\% $ of the network is sampled

    Figure 26.  Bar chart showing the summary performance of EWS when $ 80\% $ of the network is sampled

    Table 1.  Table showing the ranges of lead distances and penalties for each EWS and sampling proportion ($ \beta $) under the SNHT. A green-shaded row indicates that the EWS has mean sampling penalties less than $ 25\% $ for all sample proportions

    EWS $ \beta $ Penalty ($ \% $) Lead Distance ($ \kappa $)
    Minimum Mean Maximum Minimum Mean Maximum
    $ \mathcal M $ 0.4 0 12.63 40.51 0.39 0.76 0.89
    0.6 0 8.94 33.15 0.57 0.81 0.92
    0.8 0.49 11.27 36.34 0.58 0.75 0.86
    1 NA NA NA 0.73 0.85 0.92
    $ \big\langle {\!\Theta_{{H}}\!}\big\rangle $ 0.4 0 11.97 34.79 0.7 0.83 0.95
    0.6 0 8.65 19.33 0.73 0.83 0.92
    0.8 0.51 9.82 30.41 0.58 0.75 0.86
    1 NA NA NA 0.64 0.81 0.92
    $ \big\langle {\!\Theta_{{\Sigma}}\!}\big\rangle $ 0.4 0 8.96 22.57 0.7 0.82 0.95
    0.6 0 8.78 30.1 0.73 0.82 0.92
    0.8 0.5 12.95 44.64 0.58 0.74 0.86
    1 NA NA NA 0.7 0.83 0.98
    $ \big\langle {\!\Theta_{{V}}\!}\big\rangle $ 0.4 0 8.96 22.57 0.7 0.82 0.95
    0.6 0 8.78 30.1 0.73 0.82 0.92
    0.8 0.5 12.77 44.64 0.58 0.74 0.86
    1 NA NA NA 0.7 0.83 0.98
    $ \big\langle {\Gamma_{{H}}}\big\rangle $ 0.4 12.06 68.52 245.16 0 0.29 0.76
    0.6 0 71.48 241.14 0.01 0.3 0.79
    0.8 1.34 75.98 261.91 0.12 0.27 0.7
    1 NA NA NA 0.13 0.31 0.98
    $ \big\langle {\Gamma_{{V}}}\big\rangle $ 0.4 13.19 70.29 153.01 0.01 0.52 0.95
    0.6 5.28 64.13 146.42 0.06 0.52 0.98
    0.8 0.88 61.08 171.92 0.14 0.49 0.86
    1 NA NA NA 0.19 0.47 0.95
     | Show Table
    DownLoad: CSV

    Table 2.  Lead distances and sampling penalties of the mean sizes of opinion communities and echo chambers for different sampling proportions $ \beta $, using the SNHT. A green-shaded row indicates that the EWS has mean sampling penalties less than $ 25\% $ for all sample proportions

    EWS $ \beta $ Penalty ($ \% $) Lead Distance ($ \kappa $)
    Minimum Mean Maximum Minimum Mean Maximum
    $ \big\langle {\!\left|{Z_{{H}}}\right|\!}\big\rangle $ 0.4 4.28 21.91 47.12 0.45 0.71 0.95
    0.6 0 22.93 55.69 0.29 0.6 0.95
    0.8 3.71 35.06 81.68 0.14 0.53 0.89
    1 NA NA NA 0.51 0.73 0.95
    $ \left|{J_{{N}}}\right| $ 0.4 0 42.08 114.35 0 0.03 0.09
    0.6 0 19.31 72.77 0.01 0.06 0.12
    0.8 6.91 63.54 97.04 -0.05 0.02 0.12
    1 NA NA NA 0.01 0.06 0.12
    $ \big\langle {\!\left|{Z_{{N}}}\right|\!}\big\rangle $ 0.4 0 35.31 124.3 0.14 0.57 0.95
    0.6 0 57.94 138.61 0.04 0.51 0.98
    0.8 6.23 57.32 145.57 0 0.54 0.92
    1 NA NA NA 0.04 0.57 0.98
    $ \big\langle {\!\left|{J_{{V}}}\right|\!}\big\rangle $ 0.4 0 20.22 65.87 0.46 0.74 0.95
    0.6 0 27.77 116.62 0.1 0.66 0.95
    0.8 0.59 28.29 111.57 0.14 0.64 0.92
    1 NA NA NA 0.19 0.7 0.92
    $ \big\langle {\!\left|{Z_{{V}}}\right|\!}\big\rangle $ 0.4 0 13.47 52.2 0.45 0.74 0.92
    0.6 3.78 13.33 56.74 0.48 0.79 0.92
    0.8 0.5 10.9 41.1 0.55 0.77 0.92
    1 NA NA NA 0.67 0.83 0.98
     | Show Table
    DownLoad: CSV

    Table 3.  Lead distances and sampling penalties of the opinion network diameter, triad census and global clustering coefficient for different sampling proportions $ \beta $ using the SNHT. A green-shaded row indicates that the EWS has mean sampling penalties less than $ 25\% $ for all sample proportions

    EWS $ \beta $ Penalty ($ \% $) Lead Distance ($ \kappa $)
    Minimum Mean Maximum Minimum Mean Maximum
    $ \big\langle {\!\Delta_{{H}}\!}\big\rangle $ 0.4 3.34 88.85 210.67 0 0.5 0.98
    0.6 0 78.98 188.93 0.04 0.4 0.98
    0.8 2.23 77.55 179.46 0 0.29 0.92
    1 NA NA NA 0.04 0.37 0.76
    $ \big\langle {\!\Delta_{{N}}\!}\big\rangle $ 0.4 0 40.59 114.35 0 0.04 0.09
    0.6 0 21.29 72.77 0.01 0.06 0.12
    0.8 6.91 63.54 97.04 -0.05 0.02 0.12
    1 NA NA NA 0.01 0.06 0.12
    $ \big\langle {\!\Delta_{{V}}\!}\big\rangle $ 0.4 0 35.8 114.15 0.06 0.73 0.98
    0.6 5.14 41.53 98.73 0.06 0.53 0.86
    0.8 0.68 26.8 128.89 0.07 0.48 0.8
    1 NA NA NA 0.19 0.61 0.92
    $ \big\langle {\!\Delta_{{\Sigma}}\!}\big\rangle $ 0.4 0 39.16 143.35 0.06 0.59 0.92
    0.6 5.23 40.91 131.84 0.1 0.5 0.92
    0.8 0.7 29.2 131.14 0.14 0.53 0.8
    1 NA NA NA 0.19 0.6 0.92
    $ \big\langle {\Omega_{{H}}}\big\rangle $ 0.4 2.29 67.56 168.32 0.01 0.34 0.82
    0.6 17.18 70.01 138.55 0.04 0.38 0.82
    0.8 4.96 54.43 154.96 0.04 0.42 0.92
    1 NA NA NA 0.1 0.55 0.95
    $ \big\langle {\Omega_{{V}}}\big\rangle $ 0.4 2.73 127.21 421.08 0 0.19 0.95
    0.6 0 96.22 317.18 -0.01 0.2 0.92
    0.8 11.85 132.29 438.41 -0.05 0.16 0.64
    1 NA NA NA -0.01 0.23 0.98
    $ \big\langle {C_{{\Sigma}}}\big\rangle $ 0.4 18.17 95.41 256.14 0.04 0.41 0.92
    0.6 0 60.38 174.39 0.04 0.28 0.86
    0.8 10.29 74.13 221.01 0.06 0.3 0.89
    1 NA NA NA 0.04 0.34 0.82
    $ \big\langle {C_{{H}}}\big\rangle $ 0.4 0 89.56 186.84 0.01 0.49 0.89
    0.6 7.72 79.41 179.12 0.01 0.4 0.95
    0.8 9.78 90.64 232.13 -0.05 0.29 0.92
    1 NA NA NA 0.04 0.4 0.98
    $ \big\langle {C_{{N}}}\big\rangle $ 0.4 0 40.59 114.35 0 0.04 0.09
    0.6 0 21.29 72.77 0.01 0.06 0.12
    0.8 6.91 63.54 97.04 -0.05 0.02 0.12
    1 NA NA NA 0.01 0.06 0.12
    $ \big\langle {C_{{V}}}\big\rangle $ 0.4 3.45 137.99 486.99 0 0.19 0.92
    0.6 0 93.42 486.99 -0.01 0.13 0.92
    0.8 9.21 124.89 437.48 -0.05 0.14 0.89
    1 NA NA NA 0.01 0.18 0.89
     | Show Table
    DownLoad: CSV

    Table 4.  Lead distances and sampling penalties of the numbers of opinion communities and echo chambers for different sampling proportions $ \beta $, using the SNHT. A green-shaded row indicates that the EWS has mean sampling penalties less than $ 25\% $ for all sample proportions

    EWS $ \beta $ Penalty ($ \% $) Lead Distance ($ \kappa $)
    Minimum Mean Maximum Minimum Mean Maximum
    $ \big\langle {\#Z_{{H}}}\big\rangle $ 0.4 0 11.6 48.85 0.55 0.77 0.95
    0.6 0 11.81 53.43 0.42 0.75 0.95
    0.8 0.51 10.14 41.48 0.61 0.75 0.86
    1 NA NA NA 0.64 0.82 0.95
    $ \big\langle {\!\#{J_{{N}}\!}}\big\rangle $ 0.4 0 42.08 114.35 0 0.03 0.09
    0.6 0 19.31 72.77 0.01 0.06 0.12
    0.8 6.91 63.54 97.04 -0.05 0.02 0.12
    1 NA NA NA 0.01 0.06 0.12
    $ \big\langle {\#Z_{{N}}}\big\rangle $ 0.4 5.89 44.87 148.4 0.14 0.57 0.95
    0.6 0 69.1 177.84 0.04 0.51 0.98
    0.8 6.67 54.31 122.09 0 0.54 0.92
    1 NA NA NA 0.04 0.53 0.98
    $ \big\langle {\!\left|{J_{{V}}}\right|\!}\big\rangle $ 0.4 0 60.8 124.83 0.46 0.73 0.95
    0.6 5.2 43.28 140.43 0.06 0.6 0.95
    0.8 5.64 44.11 125.69 0.07 0.49 0.92
    1 NA NA NA 0.18 0.48 0.82
    $ \big\langle {\#Z_{{V}}}\big\rangle $ 0.4 0 77.63 271.71 0 0.02 0.07
    0.6 0 98.8 247.01 -0.01 0.02 0.06
    0.8 16.43 203.12 576.38 -0.08 -0.02 0.04
    1 NA NA NA -0.01 0.03 0.07
     | Show Table
    DownLoad: CSV

    Table 5.  Lead distances and sampling penalties of the join count statistics for different sampling proportions $ \beta $, using the SNHT. A green-shaded row indicates that the EWS has mean sampling penalties less than $ 25\% $ for all sample proportions

    EWS $ \beta $ Penalty ($ \% $) Lead Distance ($ \kappa $)
    Minimum Mean Maximum Minimum Mean Maximum
    $ \big\langle {H,H}\big\rangle $ 0.4 0 34.38 102.4 0.04 0.59 0.92
    0.6 4.27 38.52 96.42 0.06 0.48 0.86
    0.8 3.7 29.99 81.35 0.14 0.6 0.92
    1 NA NA NA 0.51 0.73 0.95
    $ \big\langle {H,N}\big\rangle $ 0.4 35.96 228.31 338.01 0.73 0.86 0.95
    0.6 11.99 207.19 335.61 0.57 0.8 0.95
    0.8 10.39 199.92 313.23 0.61 0.77 0.89
    1 NA NA NA 0.04 0.26 0.79
    $ \big\langle {H,V_s}\big\rangle $ 0.4 0 9.01 34.04 0.73 0.86 0.95
    0.6 0 13.33 41.61 0.57 0.8 0.95
    0.8 3.28 10.59 41.1 0.61 0.77 0.89
    1 NA NA NA 0.67 0.83 0.98
    $ \big\langle {N,N}\big\rangle $ 0.4 0 40.59 114.35 0 0.04 0.09
    0.6 0 21.29 72.77 0.01 0.06 0.12
    0.8 6.91 63.54 97.04 -0.05 0.02 0.12
    1 NA NA NA 0.01 0.06 0.12
    $ \big\langle {N,V_s}\big\rangle $ 0.4 5.24 47.65 147.9 0.73 0.86 0.95
    0.6 0 41.66 142.66 0.57 0.8 0.95
    0.8 4.55 38.39 122.37 0.61 0.77 0.89
    1 NA NA NA 0.04 0.6 0.98
    $ \big\langle {V_s,V_s}\big\rangle $ 0.4 0 19.99 82.58 0.06 0.68 0.89
    0.6 0 11.94 50.17 0.42 0.78 0.98
    0.8 3.35 18.88 61.23 0.42 0.68 0.83
    1 NA NA NA 0.61 0.81 0.95
     | Show Table
    DownLoad: CSV
  • [1] J. Aarstad, H. Ness and S. A. Haugland, In what ways are small-world and scale-free networks interrelated?, in 2013 IEEE International Conference on Industrial Technology (ICIT), IEEE, 2013, 1483-1487. doi: 10.1109/ICIT.2013.6505891.
    [2] D. AchlioptasR. M. D'Souza and J. Spencer, Explosive percolation in random networks, Science, 323 (2009), 1453-1455.  doi: 10.1126/science.1167782.
    [3] L. Adamic and E. Adar, How to search a social network, Social Networks, 27 (2005), 187-203.  doi: 10.1016/j.socnet.2005.01.007.
    [4] L. Adamic, O. Buyukkokten and E. Adar, A social network caught in the web, First Monday, 8 (2003). doi: 10.5210/fm.v8i6.1057.
    [5] L. A. Adamic, The small world web, in International Conference on Theory and Practice of Digital Libraries, Springer, 1999,443-452. doi: 10.1007/3-540-48155-9_27.
    [6] L. A. N. AmaralA. ScalaM. Barthelemy and H. E. Stanley, Classes of small-world networks, Proceedings of the National Academy of Sciences, 97 (2000), 11149-11152.  doi: 10.1073/pnas.200327197.
    [7] L. Backstrom and J. Leskovec, Supervised random walks: Predicting and recommending links in social networks, in Proceedings of the Fourth ACM International Conference on Web Search and Data Mining, 2011,635-644. doi: 10.1145/1935826.1935914.
    [8] Z. Bar-Yossef and M. Gurevich, Random sampling from a search engine's index, Journal of the ACM (JACM), 55 (2008), 1-74.  doi: 10.1145/1411509.1411514.
    [9] A.-L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509-512.  doi: 10.1126/science.286.5439.509.
    [10] I. BenczikS. BenczikB. Schmittmann and R. Zia, Opinion dynamics on an adaptive random network, Physical Review E, 79 (2009), 046104.  doi: 10.1103/PhysRevE.79.046104.
    [11] P. BhattacharyyaA. Garg and S. F. Wu, Analysis of user keyword similarity in online social networks, Social Network Analysis and Mining, 1 (2011), 143-158.  doi: 10.1007/s13278-010-0006-4.
    [12] S. Bhattacharyya and C. T. Bauch, "Wait and see" vaccinating behaviour during a pandemic: A game theoretic analysis, Vaccine, 29 (2011), 5519-5525.  doi: 10.1016/j.vaccine.2011.05.028.
    [13] S. Bhattacharyya and C. Bauch, A game dynamic model for delayer strategies in vaccinating behaviour for pediatric infectious diseases, Journal of Theoretical Biology, 267 (2010), 276-282.  doi: 10.1016/j.jtbi.2010.09.005.
    [14] V. Braitenberg and A. Schüz, Anatomy of the Cortex: Statistics and Geometry, vol. 18, Springer Science & Business Media, 2013.
    [15] T. S. BrettJ. M. Drake and P. Rohani, Anticipating the emergence of infectious diseases, Journal of the Royal Society Interface, 14 (2017), 20170115.  doi: 10.1098/rsif.2017.0115.
    [16] A. BroderR. KumarF. MaghoulP. RaghavanS. RajagopalanR. StataA. Tomkins and J. Wiener, Graph structure in the web, Computer networks, 33 (2000), 309-320. 
    [17] A. M. ButtenheimS. T. Cherng and D. A. Asch, Provider dismissal policies and clustering of vaccine-hesitant families: an agent-based modeling approach, Human vaccines & immunotherapeutics, 9 (2013), 1819-1824.  doi: 10.4161/hv.25635.
    [18] B. CaciM. Cardaci and M. E. Tabacchi, Facebook as a small world: A topological hypothesis, Social Network Analysis and Mining, 2 (2012), 163-167.  doi: 10.1007/s13278-011-0042-8.
    [19] L. Chi, Binary opinion dynamics with noise on random networks, Chinese Science Bulletin, 56 (2011), 3630-3632.  doi: 10.1007/s11434-011-4751-1.
    [20] S. CooperC. BetschE. Z. SambalaN. Mchiza and C. S. Wiysonge, Vaccine hesitancy-a potential threat to the achievements of vaccination programmes in africa, Human Vaccines & Immunotherapeutics, 14 (2018), 2355-2357.  doi: 10.1080/21645515.2018.1460987.
    [21] E. Dubé, C. Laberge, M. Guay, P. Bramadat, R. Roy and J. A. Bettinger, Vaccine hesitancy, Human Vaccines & Immunotherapeutics, 9 (2013), 1763-1773, https://doi.org/10.4161/hv.24657, PMID: 23584253. doi: 10.4161/hv.24657.
    [22] M. FaloutsosP. Faloutsos and C. Faloutsos, On power-law relationships of the internet topology, ACM SIGCOMM Computer Communication Review, 29 (1999), 251-262.  doi: 10.1145/316188.316229.
    [23] D. S. Felsenthal and M. Machover, Ternary voting games, International Journal of Game Theory, 26 (1997), 335-351.  doi: 10.1007/BF01263275.
    [24] E. FerraraP. De MeoG. Fiumara and R. Baumgartner, Web data extraction, applications and techniques: A survey, Knowledge-Based Systems, 70 (2014), 301-323.  doi: 10.1016/j.knosys.2014.07.007.
    [25] F. FerriP. Grifoni and T. Guzzo, New forms of social and professional digital relationships: The case of facebook, Social network Analysis and Mining, 2 (2012), 121-137.  doi: 10.1007/s13278-011-0038-4.
    [26] B. Fischoff, Human Decision Making, in: Research needs for human factors, in Community of Human Factors, National Academy Press, 1983.
    [27] M. Girvan and M. E. Newman, Community structure in social and biological networks, Proceedings of the National Academy of Sciences, 99 (2002), 7821-7826.  doi: 10.1073/pnas.122653799.
    [28] S. M. GoodreauJ. A. Kitts and M. Morris, Birds of a feather, or friend of a friend? using exponential random graph models to investigate adolescent social networks, Demography, 46 (2009), 103-125.  doi: 10.1353/dem.0.0045.
    [29] N. Kallus, Predicting crowd behavior with big public data, in Proceedings of the 23rd International Conference on World Wide Web, 2014,625-630. doi: 10.1145/2567948.2579233.
    [30] G. Kossinets and D. J. Watts, Empirical analysis of an evolving social network, Science, 311 (2006), 88-90.  doi: 10.1126/science.1116869.
    [31] R. Kumar, J. Novak and A. Tomkins, Structure and evolution of online social networks, in Link Mining: Models, Algorithms, and Applications, Springer, 2010,337-357. doi: 10.1145/1150402.1150476.
    [32] R. KumarP. RaghavanS. Rajagopalan and A. Tomkins, Trawling the web for emerging cyber-communities, Computer Networks, 31 (1999), 1481-1493.  doi: 10.1016/S1389-1286(99)00040-7.
    [33] S. LaneN. E. MacDonaldM. Marti and L. Dumolard, Vaccine hesitancy around the globe: Analysis of three years of who/unicef joint reporting form data-2015-2017, Vaccine, 36 (2018), 3861-3867.  doi: 10.1016/j.vaccine.2018.03.063.
    [34] H. J. LarsonC. JarrettE. EckersbergerD. M. Smith and P. Paterson, Understanding vaccine hesitancy around vaccines and vaccination from a global perspective: A systematic review of published literature, 2007-2012, Vaccine, 32 (2014), 2150-2159.  doi: 10.1016/j.vaccine.2014.01.081.
    [35] F. A. LópezP. BaruccaM. Fekom and A. C. Coolen, Exactly solvable random graph ensemble with extensively many short cycles, Journal of Physics A: Mathematical and Theoretical, 51 (2018), 085101.  doi: 10.1088/1751-8121/aaa555.
    [36] X. Lu and C. Brelsford, Network structure and community evolution on twitter: human behavior change in response to the 2011 japanese earthquake and tsunami, Scientific Reports, 4 (2014), 6773.  doi: 10.1038/srep06773.
    [37] S. Luo, H. Xia and B. Yin, Continuous opinion dynamics on an adaptive coupled random network, Advances in Complex Systems, 17 (2014), 1450012, 21pp. doi: 10.1142/S021952591450012X.
    [38] A. Lushnikov, Exactly solvable model of a coalescing random graph, Physical Review E, 91 (2015), 022119, 8pp. doi: 10.1103/PhysRevE.91.022119.
    [39] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel and B. Bhattacharjee, Measurement and analysis of online social networks, in Proceedings of the 7th ACM SIGCOMM conference on Internet Measurement, 2007, 29-42. doi: 10.1145/1298306.1298311.
    [40] L. Mitchell, M. R. Frank, K. D. Harris, P. S. Dodds and C. M. Danforth, The geography of happiness: Connecting twitter sentiment and expression, demographics, and objective characteristics of place, PloS One, 8 (2013), e64417. doi: 10.1371/journal.pone.0064417.
    [41] National Research Council, Condensed-Matter Physics, chapter 3, 75-94, The National Academies Press, Washington, D.C., 1986.
    [42] M. E. J. Newman, D. J. Watts and S. H. Strogatz, Random graph models of social networks, Proceedings of the National Academy of Sciences, 99 (2002), 2566-2572, https://www.pnas.org/content/99/suppl_1/2566. doi: 10.1073/pnas.012582999.
    [43] M. E. Newman, The structure of scientific collaboration networks, Proceedings of the National Academy of Sciences, 98 (2001), 404-409.  doi: 10.1073/pnas.98.2.404.
    [44] M. E. Newman, Random graphs as models of networks, Handbook of Graphs and Networks, 1 (2003), 35-68. 
    [45] T. on Vaccine Hesitancy, Report of the SAGE Working Group on Vaccine Hesitancy, Technical report, World Health Oranisation, 2014, http://www.who.int/immunization/sage/meetings/2014/october/1_Report_WORKING_GROUP_vaccine_hesitancy_final.pdf.
    [46] S. M. O'Regan and J. M. Drake, Theory of early warning signals of disease emergence and leading indicators of elimination, Theoretical Ecology, 6 (2013), 333-357. 
    [47] K. PandžićM. KoboldD. OskorušB. BiondićR. BiondićO. BonacciT. Likso and O. Curić, Standard normal homogeneity test as a tool to detect change points in climate-related river discharge variation: case study of the kupa river basin, Hydrological Sciences Journal, 65 (2020), 227-241. 
    [48] C. Parker, The influence relation for ternary voting games, Games and Economic Behavior, 75 (2012), 867-881.  doi: 10.1016/j.geb.2012.02.007.
    [49] A. G. Phadke and J. S. Thorp, Computer Relaying for Power Systems, John Wiley & Sons, 2009. doi: 10.1002/9780470749722.
    [50] T. Q. Phan and E. M. Airoldi, A natural experiment of social network formation and dynamics, Proceedings of the National Academy of Sciences, 112 (2015), 6595-6600.  doi: 10.1073/pnas.1404770112.
    [51] B. PhillipsM. Anand and C. T. Bauch, Spatial early warning signals of social and epidemiological tipping points in a coupled behaviour-disease network, Scientific Reports, 10 (2020), 1-12. 
    [52] B. Phillips and C. T. Bauch, Echo chambers as early warning signals of widespread vaccine refusal in social-epidemiological networks, MedRxiv, 2020, https://www.medrxiv.org/content/early/2020/10/20/2020.10.17.20214312. doi: 10.1101/2020.10.17.20214312.
    [53] C. Piña-GarcíaC. Gershenson and J. M. Siqueiros-García, Towards a standard sampling methodology on online social networks: Collecting global trends on twitter, Applied Network Science, 1 (2016), 3. 
    [54] C. Piña-García and D. Gu, Spiraling facebook: an alternative metropolis-hastings random walk using a spiral proposal distribution, Social Network Analysis and Mining, 3 (2013), 1403-1415. 
    [55] S. D. Roy and W. Zeng, Social Multimedia Signals, Springer, 2015. doi: 10.1007/978-3-319-09117-4.
    [56] A. Tahbaz-Salehi and A. Jadbabaie, A necessary and sufficient condition for consensus over random networks, IEEE Transactions on Automatic Control, 53 (2008), 791-795.  doi: 10.1109/TAC.2008.917743.
    [57] N. A. Thapen and M. M. Ghanem, Towards passive political opinion polling using twitter, in SMA@ BCS-SGAI, 2013, 19-34.
    [58] J. Ugander, B. Karrer, L. Backstrom and C. Marlow, The anatomy of the facebook social graph, arXiv preprint, arXiv: 1111.4503.
    [59] G. Weikum, N. Ntarmos, M. Spaniol, P. Triantafillou, A. A. Benczúr, S. Kirkpatrick, P. Rigaux and M. Williamson, Longitudinal analytics on web archive data: It's about time!, in CIDR, 2011,199-202.
    [60] L. WengA. FlamminiA. Vespignani and F. Menczer, Competition among memes in a world with limited attention, Scientific Reports, 2 (2012), 335. 
    [61] A. B. WiyehS. CooperC. A. Nnaji and C. S. Wiysonge, Vaccine hesitancy 'outbreaks': using epidemiological modeling of the spread of ideas to understand the effects of vaccine related events on vaccine hesitancy, Expert Review of Vaccines, 17 (2018), 1063-1070. 
    [62] Y. Yu and G. Xiao, Influence of random opinion change in complex networks, in 2015 IEEE International Conference on Digital Signal Processing (DSP), IEEE, 2015,750-754.
    [63] D. Zhao, K. Zhao, J. Yang and J. Sha, A friendship network based on random and triadicclosure in a fixed community, in Frontiers in Computer Education: Proceedings of the 2nd International Conference on Frontiers in Computer Education (ICFCE 2014), Wuhan, China, December 24-25, 2014, CRC Press, 2015, 29.
  • 加载中

Figures(26)

Tables(5)

SHARE

Article Metrics

HTML views(3024) PDF downloads(411) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return