June  2009, 1(2): 159-180. doi: 10.3934/jgm.2009.1.159

Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations

1. 

Faculty of Mathematics, Al.I.Cuza University, Iasi, 700506, Romania

2. 

Institute of Mathematics, Helsinki University of Technology, P.O.Box 1100, 02015 Helsinki, Finland

Received  April 2009 Revised  June 2009 Published  July 2009

We use Frölicher-Nijenhuis theory to obtain global Helmholtz conditions, expressed in terms of a semi-basic 1-form, that characterize when a semispray is a Lagrangian vector field. We also discuss the relation between these Helmholtz conditions and their classic formulation written using a multiplier matrix. When the semi-basic 1-form is 1-homogeneous (0-homogeneous) we show that two (one) of the Helmholtz conditions are consequences of the other ones. These two special cases correspond to two inverse problems in the calculus of variation: Finsler metrizability for a spray, and projective metrizability for a spray.
Citation: Ioan Bucataru, Matias F. Dahl. Semi-basic 1-forms and Helmholtz conditions for the inverse problem of the calculus of variations. Journal of Geometric Mechanics, 2009, 1 (2) : 159-180. doi: 10.3934/jgm.2009.1.159
[1]

Carlos Durán, Diego Otero. The projective Cartan-Klein geometry of the Helmholtz conditions. Journal of Geometric Mechanics, 2018, 10 (1) : 69-92. doi: 10.3934/jgm.2018003

[2]

J. C. Alvarez Paiva and E. Fernandes. Crofton formulas in projective Finsler spaces. Electronic Research Announcements, 1998, 4: 91-100.

[3]

Michael V. Klibanov. A phaseless inverse scattering problem for the 3-D Helmholtz equation. Inverse Problems & Imaging, 2017, 11 (2) : 263-276. doi: 10.3934/ipi.2017013

[4]

Karzan Berdawood, Abdeljalil Nachaoui, Rostam Saeed, Mourad Nachaoui, Fatima Aboud. An efficient D-N alternating algorithm for solving an inverse problem for Helmholtz equation. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021013

[5]

Giulio Ciraolo, Antonio Greco. An overdetermined problem associated to the Finsler Laplacian. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1025-1038. doi: 10.3934/cpaa.2021004

[6]

Kien Trung Nguyen, Vo Nguyen Minh Hieu, Van Huy Pham. Inverse group 1-median problem on trees. Journal of Industrial & Management Optimization, 2021, 17 (1) : 221-232. doi: 10.3934/jimo.2019108

[7]

Hui Liu, Yiming Long, Yuming Xiao. The existence of two non-contractible closed geodesics on every bumpy Finsler compact space form. Discrete & Continuous Dynamical Systems, 2018, 38 (8) : 3803-3829. doi: 10.3934/dcds.2018165

[8]

Jesús Carrillo-Pacheco, Felipe Zaldivar. On codes over FFN$(1,q)$-projective varieties. Advances in Mathematics of Communications, 2016, 10 (2) : 209-220. doi: 10.3934/amc.2016001

[9]

Antonio Giorgilli, Stefano Marmi. Convergence radius in the Poincaré-Siegel problem. Discrete & Continuous Dynamical Systems - S, 2010, 3 (4) : 601-621. doi: 10.3934/dcdss.2010.3.601

[10]

Jussi Korpela, Matti Lassas, Lauri Oksanen. Discrete regularization and convergence of the inverse problem for 1+1 dimensional wave equation. Inverse Problems & Imaging, 2019, 13 (3) : 575-596. doi: 10.3934/ipi.2019027

[11]

Lidan Li, Hongwei Zhang, Liwei Zhang. Inverse quadratic programming problem with $ l_1 $ norm measure. Journal of Industrial & Management Optimization, 2020, 16 (5) : 2425-2437. doi: 10.3934/jimo.2019061

[12]

Alexey Smirnov, Michael Klibanov, Loc Nguyen. Convexification for a 1D hyperbolic coefficient inverse problem with single measurement data. Inverse Problems & Imaging, 2020, 14 (5) : 913-938. doi: 10.3934/ipi.2020042

[13]

Michael V. Klibanov, Loc H. Nguyen, Anders Sullivan, Lam Nguyen. A globally convergent numerical method for a 1-d inverse medium problem with experimental data. Inverse Problems & Imaging, 2016, 10 (4) : 1057-1085. doi: 10.3934/ipi.2016032

[14]

El Mustapha Ait Ben Hassi, Salah-Eddine Chorfi, Lahcen Maniar, Omar Oukdach. Lipschitz stability for an inverse source problem in anisotropic parabolic equations with dynamic boundary conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020094

[15]

Carlos Durán, Diego Otero. The projective symplectic geometry of higher order variational problems: Minimality conditions. Journal of Geometric Mechanics, 2016, 8 (3) : 305-322. doi: 10.3934/jgm.2016009

[16]

Sigve Hovda. Closed-form expression for the inverse of a class of tridiagonal matrices. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 437-445. doi: 10.3934/naco.2016019

[17]

Daniel Bouche, Youngjoon Hong, Chang-Yeol Jung. Asymptotic analysis of the scattering problem for the Helmholtz equations with high wave numbers. Discrete & Continuous Dynamical Systems, 2017, 37 (3) : 1159-1181. doi: 10.3934/dcds.2017048

[18]

Victor Isakov, Joseph Myers. On the inverse doping profile problem. Inverse Problems & Imaging, 2012, 6 (3) : 465-486. doi: 10.3934/ipi.2012.6.465

[19]

Sergey V. Bolotin, Piero Negrini. Variational approach to second species periodic solutions of Poincaré of the 3 body problem. Discrete & Continuous Dynamical Systems, 2013, 33 (3) : 1009-1032. doi: 10.3934/dcds.2013.33.1009

[20]

Giovanni Covi, Keijo Mönkkönen, Jesse Railo. Unique continuation property and Poincaré inequality for higher order fractional Laplacians with applications in inverse problems. Inverse Problems & Imaging, 2021, 15 (4) : 641-681. doi: 10.3934/ipi.2021009

2020 Impact Factor: 0.857

Metrics

  • PDF downloads (167)
  • HTML views (0)
  • Cited by (17)

Other articles
by authors

[Back to Top]