 Previous Article
 JGM Home
 This Issue

Next Article
The geometry and dynamics of interacting rigid bodies and point vortices
Book review: Geometric mechanics
1.  Department of Mathematics, University of Surrey, Guildford, GU2 7XH 
For more information please click the “Full Text” above.
[1] 
Miguel RodríguezOlmos. Book review: Geometric mechanics and symmetry, by Darryl D. Holm, Tanya Schmah and Cristina Stoica. Journal of Geometric Mechanics, 2009, 1 (4) : 483488. doi: 10.3934/jgm.2009.1.483 
[2] 
Reuven Segev. Book review: Marcelo Epstein, The Geometrical Language of Continuum Mechanics. Journal of Geometric Mechanics, 2011, 3 (1) : 139143. doi: 10.3934/jgm.2011.3.139 
[3] 
JeanMarie Souriau. On Geometric Mechanics. Discrete & Continuous Dynamical Systems  A, 2007, 19 (3) : 595607. doi: 10.3934/dcds.2007.19.595 
[4] 
Andrew D. Lewis. The physical foundations of geometric mechanics. Journal of Geometric Mechanics, 2017, 9 (4) : 487574. doi: 10.3934/jgm.2017019 
[5] 
François GayBalmaz, Darryl D. Holm. Predicting uncertainty in geometric fluid mechanics. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 114. doi: 10.3934/dcdss.2020071 
[6] 
Alexis Arnaudon, So Takao. Networks of coadjoint orbits: From geometric to statistical mechanics. Journal of Geometric Mechanics, 2019, 11 (4) : 447485. doi: 10.3934/jgm.2019023 
[7] 
Alberto Bressan, Marco Mazzola, Hongxu Wei. A dynamic model of the limit order book. Discrete & Continuous Dynamical Systems  B, 2017, 22 (11) : 00. doi: 10.3934/dcdsb.2019206 
[8] 
Mauro Garavello. A review of conservation laws on networks. Networks & Heterogeneous Media, 2010, 5 (3) : 565581. doi: 10.3934/nhm.2010.5.565 
[9] 
B. Spagnolo, D. Valenti, A. Fiasconaro. Noise in ecosystems: A short review. Mathematical Biosciences & Engineering, 2004, 1 (1) : 185211. doi: 10.3934/mbe.2004.1.185 
[10] 
Jin Ma, Xinyang Wang, Jianfeng Zhang. Dynamic equilibrium limit order book model and optimal execution problem. Mathematical Control & Related Fields, 2015, 5 (3) : 557583. doi: 10.3934/mcrf.2015.5.557 
[11] 
Tao Li, Suresh P. Sethi. A review of dynamic Stackelberg game models. Discrete & Continuous Dynamical Systems  B, 2017, 22 (1) : 125159. doi: 10.3934/dcdsb.2017007 
[12] 
Radjesvarane Alexandre. A review of Boltzmann equation with singular kernels. Kinetic & Related Models, 2009, 2 (4) : 551646. doi: 10.3934/krm.2009.2.551 
[13] 
Peter Giesl, Sigurdur Hafstein. Review on computational methods for Lyapunov functions. Discrete & Continuous Dynamical Systems  B, 2015, 20 (8) : 22912331. doi: 10.3934/dcdsb.2015.20.2291 
[14] 
JeanClaude Zambrini. Stochastic deformation of classical mechanics. Conference Publications, 2013, 2013 (special) : 807813. doi: 10.3934/proc.2013.2013.807 
[15] 
Vieri Benci. Solitons and Bohmian mechanics. Discrete & Continuous Dynamical Systems  A, 2002, 8 (2) : 303317. doi: 10.3934/dcds.2002.8.303 
[16] 
Paul Popescu, Cristian Ida. Nonlinear constraints in nonholonomic mechanics. Journal of Geometric Mechanics, 2014, 6 (4) : 527547. doi: 10.3934/jgm.2014.6.527 
[17] 
Jamie Cruz, Miguel Gutiérrez. Spiral motion in classical mechanics. Conference Publications, 2009, 2009 (Special) : 191197. doi: 10.3934/proc.2009.2009.191 
[18] 
Cristina Stoica. An approximation theorem in classical mechanics. Journal of Geometric Mechanics, 2016, 8 (3) : 359374. doi: 10.3934/jgm.2016011 
[19] 
Alain Miranville, Ulisse Stefanelli, Lev Truskinovsky, Augusto Visintin. Preface: Applications of mathematics to mechanics. Discrete & Continuous Dynamical Systems  S, 2017, 10 (1) : ⅰⅱ. doi: 10.3934/dcdss.201701i 
[20] 
Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345360. doi: 10.3934/jcd.2019017 
2018 Impact Factor: 0.525
Tools
Metrics
Other articles
by authors
[Back to Top]