September  2009, 1(3): i-i. doi: 10.3934/jgm.2009.1.3i



Instituto de Ciencias Matemáticas, CSIC-UAM-UC3M-UCM, 28006 Madrid, Spain


Department of Fundamental Mathematics, Faculty of Mathematics, University of La Laguna, C/Astrofisico Fco. Sanchez s/n, 38071, La Laguna, Tenerife, Canary Islands, Spain


Instituto de Ciencias Matematicas, C/ Serrano 123, 28006 Madrid, Spain

Published  November 2009

The Hamilton-Jacobi theory is a classical subject that was extensively developed in the last two centuries. The Hamilton-Jacobi equation is particularly useful in identifying conserved quantities for mechanical systems, which may be possible even when the mechanical problem itself cannot be solved completely. Indeed, the powerful of this method is that, in spite of the difficulties to solve a partial differential equation instead of an ordinary differential one, in many cases it works, being an extremely useful tool, usually more than Hamilton’s equations. Indeed, in these cases the method provides an immediate way to integrate the equations of motion. The modern interpretation relating the Hamilton-Jacobi procedure with the theory of lagrangian submanifolds is an important source of new results and insights.
   In addition, the Hamilton-Jacobi-Bellman equation is a partial differential equation which is central to optimal control theory. The equation is a result of the theory of dynamic programming which was pioneered in the 1950s by Richard Bellman and coworkers. The corresponding discrete-time equation is usually referred to as the Bellman equation. In continuous time, the result can be seen as an extension of earlier work in classical physics on the Hamilton-Jacobi equation by Hamilton and Jacobi.
   This special issue on Hamilton-Jacobi theory wants to bring specialists coming from different areas of research and show how the Hamilton-Jacobi theory is so useful in their domains: completely integrable systems, nonholonomic mechanics, Schrödinger equation, optimal control theory, and, in particular, applications in engineering and economics.
Citation: Manuel de León, Juan C. Marrero, David Martin de Diego. Preface. Journal of Geometric Mechanics, 2009, 1 (3) : i-i. doi: 10.3934/jgm.2009.1.3i

Christian Kanzow, Dong-Hui Li, Nobuo Yamashita. Preface. Numerical Algebra, Control & Optimization, 2011, 1 (1) : i-v. doi: 10.3934/naco.2011.1.1i


Thorsten Koch, Xiaoling Sun. Preface. Numerical Algebra, Control & Optimization, 2012, 2 (4) : i-ii. doi: 10.3934/naco.2012.2.4i


Eduard Feireisl, Josef Málek, Mirko Rokyta. Preface. Discrete & Continuous Dynamical Systems - S, 2010, 3 (3) : i-ii. doi: 10.3934/dcdss.2010.3.3i


Eduard Feireisl, Mirko Rokyta, Josef Málek. Preface. Discrete & Continuous Dynamical Systems - S, 2008, 1 (3) : i-iii. doi: 10.3934/dcdss.2008.1.3i


Iván Area, Alberto Cabada, José Ángel Cid, Daniel Franco, Eduardo Liz, Rosana Rodríguez-López. Preface. Discrete & Continuous Dynamical Systems - B, 2020, 25 (2) : i-iv. doi: 10.3934/dcdsb.2019269


Carlos Castillo-Chavez, Gerardo Chowell. Preface. Mathematical Biosciences & Engineering, 2011, 8 (1) : i-vi. doi: 10.3934/mbe.2011.8.1i


P. De Maesschalck, Freddy Dumortier, Martin Wechselberger. Preface. Discrete & Continuous Dynamical Systems - S, 2009, 2 (4) : i-iii. doi: 10.3934/dcdss.2009.2.4i


Urszula Ledzewicz, Marek Galewski, Andrzej Nowakowski, Andrzej Swierniak, Agnieszka Kalamajska, Ewa Schmeidel. Preface. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : i-ii. doi: 10.3934/dcdsb.2014.19.8i


Chaudry Masood Khalique, Maria Luz Gandarais, Mufid Abudiab. Preface. Discrete & Continuous Dynamical Systems - S, 2018, 11 (4) : i-ii. doi: 10.3934/dcdss.201804i


Zhouping Xin, Tong Yang. Preface. Discrete & Continuous Dynamical Systems - S, 2016, 9 (6) : i-ii. doi: 10.3934/dcdss.201606i


Zhaosheng Feng, Wei Feng. Preface. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : i-i. doi: 10.3934/dcdss.2014.7.6i


Cheng-Chew Lim, Song Wang. Preface. Journal of Industrial & Management Optimization, 2008, 4 (1) : i-ii. doi: 10.3934/jimo.2008.4.1i


Vadim Kaloshin, Sergey Lototsky, Michael Röckner. Preface. Discrete & Continuous Dynamical Systems - B, 2006, 6 (4) : i-ii. doi: 10.3934/dcdsb.2006.6.4i


Wei Kang, Liang Ke, Qi Wang. Preface. Discrete & Continuous Dynamical Systems - B, 2007, 8 (3) : i-i. doi: 10.3934/dcdsb.2007.8.3i


Noureddine Alaa, Marc Dambrine, Antoine Henrot, Alain Miranville. Preface. Communications on Pure & Applied Analysis, 2012, 11 (6) : i-ii. doi: 10.3934/cpaa.2012.11.6i


Shengji Li, Nan-Jing Huang, Xinmin Yang. Preface. Numerical Algebra, Control & Optimization, 2011, 1 (3) : i-ii. doi: 10.3934/naco.2011.1.3i


Avner Friedman, Mirosław Lachowicz, Urszula Ledzewicz, Monika Joanna Piotrowska, Zuzanna Szymanska. Preface. Mathematical Biosciences & Engineering, 2017, 14 (1) : i-i. doi: 10.3934/mbe.201701i


Baojun Bian, Shanjian Tang, Qi Zhang. Preface. Discrete & Continuous Dynamical Systems, 2015, 35 (11) : i-iv. doi: 10.3934/dcds.2015.35.11i


Zhaosheng Feng, Jinzhi Lei. Preface. Discrete & Continuous Dynamical Systems - B, 2011, 16 (2) : i-iv. doi: 10.3934/dcdsb.2011.16.2i


Frédéric Coquel, Edwige Godlewski, Jean-Marc Hérard, Jacques Segré. Preface. Networks & Heterogeneous Media, 2010, 5 (3) : i-ii. doi: 10.3934/nhm.2010.5.3i

2020 Impact Factor: 0.857


  • PDF downloads (25)
  • HTML views (0)
  • Cited by (0)

[Back to Top]