
Previous Article
Geodesic boundary value problems with symmetry
 JGM Home
 This Issue
 Next Article
Dirac constraints in field theory and exterior differential systems
1.  Instituto Balseiro and Centro Atómico Bariloche, Avda. E. Bustillo km. 9,5, S. C. de Bariloche, Argentina 
[1] 
Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93138. doi: 10.3934/jgm.2018004 
[2] 
Hernán Cendra, María Etchechoury, Sebastián J. Ferraro. An extension of the Dirac and GotayNester theories of constraints for Dirac dynamical systems. Journal of Geometric Mechanics, 2014, 6 (2) : 167236. doi: 10.3934/jgm.2014.6.167 
[3] 
Ünver Çiftçi. LeibnizDirac structures and nonconservative systems with constraints. Journal of Geometric Mechanics, 2013, 5 (2) : 167183. doi: 10.3934/jgm.2013.5.167 
[4] 
Paul Bracken. Exterior differential systems and prolongations for three important nonlinear partial differential equations. Communications on Pure & Applied Analysis, 2011, 10 (5) : 13451360. doi: 10.3934/cpaa.2011.10.1345 
[5] 
Marco Castrillón López, Mark J. Gotay. Covariantizing classical field theories. Journal of Geometric Mechanics, 2011, 3 (4) : 487506. doi: 10.3934/jgm.2011.3.487 
[6] 
Angelo B. Mingarelli. Nonlinear functionals in oscillation theory of matrix differential systems. Communications on Pure & Applied Analysis, 2004, 3 (1) : 7584. doi: 10.3934/cpaa.2004.3.75 
[7] 
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems  A, 2017, 37 (8) : 43294346. doi: 10.3934/dcds.2017185 
[8] 
Kai Du, Jianhui Huang, Zhen Wu. Linear quadratic meanfieldgame of backward stochastic differential systems. Mathematical Control & Related Fields, 2018, 8 (3&4) : 653678. doi: 10.3934/mcrf.2018028 
[9] 
Jiakun Liu, Neil S. Trudinger. On the classical solvability of near field reflector problems. Discrete & Continuous Dynamical Systems  A, 2016, 36 (2) : 895916. doi: 10.3934/dcds.2016.36.895 
[10] 
Harald Markum, Rainer Pullirsch. Classical and quantum chaos in fundamental field theories. Conference Publications, 2003, 2003 (Special) : 596603. doi: 10.3934/proc.2003.2003.596 
[11] 
Ruikuan Liu, Tian Ma, Shouhong Wang, Jiayan Yang. Thermodynamical potentials of classical and quantum systems. Discrete & Continuous Dynamical Systems  B, 2019, 24 (4) : 14111448. doi: 10.3934/dcdsb.2018214 
[12] 
Melvin Leok, Diana Sosa. Dirac structures and HamiltonJacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421442. doi: 10.3934/jgm.2012.4.421 
[13] 
Matthias Hieber. Remarks on the theory of OldroydB fluids in exterior domains. Discrete & Continuous Dynamical Systems  S, 2013, 6 (5) : 13071313. doi: 10.3934/dcdss.2013.6.1307 
[14] 
Luca Consolini, Alessandro Costalunga, Manfredi Maggiore. A coordinatefree theory of virtual holonomic constraints. Journal of Geometric Mechanics, 2018, 10 (4) : 467502. doi: 10.3934/jgm.2018018 
[15] 
Claude Bardos, Nicolas Besse. The Cauchy problem for the VlasovDiracBenney equation and related issues in fluid mechanics and semiclassical limits. Kinetic & Related Models, 2013, 6 (4) : 893917. doi: 10.3934/krm.2013.6.893 
[16] 
Cédric M. Campos, Elisa Guzmán, Juan Carlos Marrero. Classical field theories of first order and Lagrangian submanifolds of premultisymplectic manifolds. Journal of Geometric Mechanics, 2012, 4 (1) : 126. doi: 10.3934/jgm.2012.4.1 
[17] 
Narciso RománRoy, Ángel M. Rey, Modesto Salgado, Silvia Vilariño. On the $k$symplectic, $k$cosymplectic and multisymplectic formalisms of classical field theories. Journal of Geometric Mechanics, 2011, 3 (1) : 113137. doi: 10.3934/jgm.2011.3.113 
[18] 
Pedro Daniel PrietoMartínez, Narciso RománRoy. A new multisymplectic unified formalism for second order classical field theories. Journal of Geometric Mechanics, 2015, 7 (2) : 203253. doi: 10.3934/jgm.2015.7.203 
[19] 
Tomasz Kaczynski, Marian Mrozek, Thomas Wanner. Towards a formal tie between combinatorial and classical vector field dynamics. Journal of Computational Dynamics, 2016, 3 (1) : 1750. doi: 10.3934/jcd.2016002 
[20] 
Jaume Llibre, Clàudia Valls. Hopf bifurcation for some analytic differential systems in $\R^3$ via averaging theory. Discrete & Continuous Dynamical Systems  A, 2011, 30 (3) : 779790. doi: 10.3934/dcds.2011.30.779 
2018 Impact Factor: 0.525
Tools
Metrics
Other articles
by authors
[Back to Top]