
Previous Article
Linear almost Poisson structures and HamiltonJacobi equation. Applications to nonholonomic mechanics
 JGM Home
 This Issue
 Next Article
Informationtheoretic inequalities on unimodular Lie groups
1.  Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, United States 
[1] 
Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 110. 
[2] 
Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413435. doi: 10.3934/jgm.2016014 
[3] 
Nadya Markin, Eldho K. Thomas, Frédérique Oggier. On group violations of inequalities in five subgroups. Advances in Mathematics of Communications, 2016, 10 (4) : 871893. doi: 10.3934/amc.2016047 
[4] 
Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete & Continuous Dynamical Systems  A, 2014, 34 (3) : 977990. doi: 10.3934/dcds.2014.34.977 
[5] 
Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, ThiênHiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495505. doi: 10.3934/proc.2007.2007.495 
[6] 
Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93138. doi: 10.3934/jgm.2018004 
[7] 
Takeshi Fukao, Nobuyuki Kenmochi. Abstract theory of variational inequalities and Lagrange multipliers. Conference Publications, 2013, 2013 (special) : 237246. doi: 10.3934/proc.2013.2013.237 
[8] 
David BlázquezSanz, Juan J. MoralesRuiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete & Continuous Dynamical Systems  A, 2012, 32 (2) : 353379. doi: 10.3934/dcds.2012.32.353 
[9] 
Melvin Leok, Diana Sosa. Dirac structures and HamiltonJacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421442. doi: 10.3934/jgm.2012.4.421 
[10] 
Ben Muatjetjeja, Dimpho Millicent Mothibi, Chaudry Masood Khalique. Lie group classification a generalized coupled (2+1)dimensional hyperbolic system. Discrete & Continuous Dynamical Systems  S, 2020, 13 (10) : 28032812. doi: 10.3934/dcdss.2020219 
[11] 
Michele Zadra, Elizabeth L. Mansfield. Using Lie group integrators to solve two and higher dimensional variational problems with symmetry. Journal of Computational Dynamics, 2019, 6 (2) : 485511. doi: 10.3934/jcd.2019025 
[12] 
Lakehal Belarbi. Ricci solitons of the $ \mathbb{H}^{2} \times \mathbb{R} $ Lie group. Electronic Research Archive, 2020, 28 (1) : 157163. doi: 10.3934/era.2020010 
[13] 
Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the AubryMather theory of HamiltonJacobi equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 683688. doi: 10.3934/cpaa.2009.8.683 
[14] 
Wenlei Li, Shaoyun Shi. Singular perturbed renormalization group theory and its application to highly oscillatory problems. Discrete & Continuous Dynamical Systems  B, 2018, 23 (4) : 18191833. doi: 10.3934/dcdsb.2018089 
[15] 
JeanPaul Thouvenot. The work of Lewis Bowen on the entropy theory of nonamenable group actions. Journal of Modern Dynamics, 2019, 15: 133141. doi: 10.3934/jmd.2019016 
[16] 
Christopher Goodrich, Carlos Lizama. Positivity, monotonicity, and convexity for convolution operators. Discrete & Continuous Dynamical Systems  A, 2020, 40 (8) : 49614983. doi: 10.3934/dcds.2020207 
[17] 
Yongjian Liu, Zhenhai Liu, Dumitru Motreanu. Differential inclusion problems with convolution and discontinuous nonlinearities. Evolution Equations & Control Theory, 2020, 9 (4) : 10571071. doi: 10.3934/eect.2020056 
[18] 
Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345360. doi: 10.3934/jcd.2019017 
[19] 
Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete & Continuous Dynamical Systems  A, 2007, 18 (1) : 3952. doi: 10.3934/dcds.2007.18.39 
[20] 
Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems  S, 2020, 13 (4) : 11151129. doi: 10.3934/dcdss.2020066 
2019 Impact Factor: 0.649
Tools
Metrics
Other articles
by authors
[Back to Top]