 Previous Article
 JGM Home
 This Issue

Next Article
Linear almost Poisson structures and HamiltonJacobi equation. Applications to nonholonomic mechanics
Informationtheoretic inequalities on unimodular Lie groups
1.  Department of Mechanical Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, United States 
[1] 
Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 110. 
[2] 
Katarzyna Grabowska, Marcin Zając. The Tulczyjew triple in mechanics on a Lie group. Journal of Geometric Mechanics, 2016, 8 (4) : 413435. doi: 10.3934/jgm.2016014 
[3] 
Nadya Markin, Eldho K. Thomas, Frédérique Oggier. On group violations of inequalities in five subgroups. Advances in Mathematics of Communications, 2016, 10 (4) : 871893. doi: 10.3934/amc.2016047 
[4] 
Elena Celledoni, Brynjulf Owren. Preserving first integrals with symmetric Lie group methods. Discrete & Continuous Dynamical Systems  A, 2014, 34 (3) : 977990. doi: 10.3934/dcds.2014.34.977 
[5] 
Emma Hoarau, Claire david@lmm.jussieu.fr David, Pierre Sagaut, ThiênHiêp Lê. Lie group study of finite difference schemes. Conference Publications, 2007, 2007 (Special) : 495505. doi: 10.3934/proc.2007.2007.495 
[6] 
Eduardo Martínez. Classical field theory on Lie algebroids: Multisymplectic formalism. Journal of Geometric Mechanics, 2018, 10 (1) : 93138. doi: 10.3934/jgm.2018004 
[7] 
Takeshi Fukao, Nobuyuki Kenmochi. Abstract theory of variational inequalities and Lagrange multipliers. Conference Publications, 2013, 2013 (special) : 237246. doi: 10.3934/proc.2013.2013.237 
[8] 
David BlázquezSanz, Juan J. MoralesRuiz. Lie's reduction method and differential Galois theory in the complex analytic context. Discrete & Continuous Dynamical Systems  A, 2012, 32 (2) : 353379. doi: 10.3934/dcds.2012.32.353 
[9] 
Melvin Leok, Diana Sosa. Dirac structures and HamiltonJacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421442. doi: 10.3934/jgm.2012.4.421 
[10] 
Wenlei Li, Shaoyun Shi. Singular perturbed renormalization group theory and its application to highly oscillatory problems. Discrete & Continuous Dynamical Systems  B, 2018, 23 (4) : 18191833. doi: 10.3934/dcdsb.2018089 
[11] 
JeanPaul Thouvenot. The work of Lewis Bowen on the entropy theory of nonamenable group actions. Journal of Modern Dynamics, 2019, 15: 133141. doi: 10.3934/jmd.2019016 
[12] 
Yasuhiro Fujita, Katsushi Ohmori. Inequalities and the AubryMather theory of HamiltonJacobi equations. Communications on Pure & Applied Analysis, 2009, 8 (2) : 683688. doi: 10.3934/cpaa.2009.8.683 
[13] 
Huimin Liang, Peixuan Weng, Yanling Tian. Bility and traveling wavefronts for a convolution model of mistletoes and birds with nonlocal diffusion. Discrete & Continuous Dynamical Systems  B, 2017, 22 (6) : 22072231. doi: 10.3934/dcdsb.2017093 
[14] 
Hironobu Sasaki. Small data scattering for the KleinGordon equation with cubic convolution nonlinearity. Discrete & Continuous Dynamical Systems  A, 2006, 15 (3) : 973981. doi: 10.3934/dcds.2006.15.973 
[15] 
JongShenq Guo, YingChih Lin. Traveling wave solution for a lattice dynamical system with convolution type nonlinearity. Discrete & Continuous Dynamical Systems  A, 2012, 32 (1) : 101124. doi: 10.3934/dcds.2012.32.101 
[16] 
Seung Jun Chang, Jae Gil Choi. Generalized transforms and generalized convolution products associated with Gaussian paths on function space. Communications on Pure & Applied Analysis, 2020, 19 (1) : 371389. doi: 10.3934/cpaa.2020019 
[17] 
Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete & Continuous Dynamical Systems  A, 2007, 18 (1) : 3952. doi: 10.3934/dcds.2007.18.39 
[18] 
André Caldas, Mauro Patrão. Entropy of endomorphisms of Lie groups. Discrete & Continuous Dynamical Systems  A, 2013, 33 (4) : 13511363. doi: 10.3934/dcds.2013.33.1351 
[19] 
Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517526. doi: 10.3934/jgm.2015.7.517 
[20] 
Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 115. doi: 10.3934/dcdss.2020066 
2018 Impact Factor: 0.525
Tools
Metrics
Other articles
by authors
[Back to Top]