September  2010, 2(3): 265-302. doi: 10.3934/jgm.2010.2.265

When is a control system mechanical?

1. 

Department of Mathematics, School of Sciences and Technology, University of Trás-os-Montes e Alto Douro, 5001-801 Vila Real, Portugal

2. 

INSA-Rouen, Laboratoire de Mathématiques, 76801 Saint-Etienne-du-Rouvray, France

Received  May 2010 Published  November 2010

In this work we present a geometric setting for studying mechanical control systems. We distinguish a special class: the class of geodesically accessible mechanical systems, for which the uniqueness of the mechanical structure is guaranteed (up to an extended point transformation). We characterise nonlinear control systems that are state equivalent to a system from this class and we describe the canonical mechanical structure attached to them. Several illustrative examples are given.
Citation: Sandra Ricardo, Witold Respondek. When is a control system mechanical?. Journal of Geometric Mechanics, 2010, 2 (3) : 265-302. doi: 10.3934/jgm.2010.2.265
References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics,", Addison-Wesley, (1978). Google Scholar

[2]

A. A. Agrachev, Feedback-invariant optimal control theory and differential geometry. II. Jacobi curves for singular extremals,, J. Dynam. Control Systems, 4 (1998), 583. doi: 10.1023/A:1021871218615. Google Scholar

[3]

A. A. Agrachev and R. V. Gamkrelidze, Feedback-invariant optimal control theory and differential geometry. I. Regular extremals,, J. Dynam. Control Systems, 3 (1997), 343. doi: 10.1007/BF02463256. Google Scholar

[4]

A. A. Agrachev and Y. L. Sachkov, "Control Theory from the Geometric Viewpoint,", Springer-Verlag Berlin and Heidelberg, (2004). Google Scholar

[5]

I. Anderson and G. Thompson, The inverse problem of the calculus of variations for ordinary differential equations,, Mem. Amer. Math. Soc., 98 (1992), 108. Google Scholar

[6]

H. Arai, K. Tanie and N. Shiroma, Nonholonomic control of a three-DOF planar underactuated manipulator,, IEEE Trans. Robot. Autom., 14 (1998), 681. doi: 10.1109/70.720345. Google Scholar

[7]

A. M. Bloch, "Nonholonomics Mechanics and Control,", Springer-Verlag, (2003). doi: 10.1007/b97376. Google Scholar

[8]

B. Bonnard, Feedback equivalence for nonlinear systems and the time optimal control problem,, SIAM J. Control and Optim., 29 (1991), 1300. doi: 10.1137/0329067. Google Scholar

[9]

W. Boothby, "An Introduction to Differential Manifolds and Riemannian Geometry,", 2nd edition, (1986). Google Scholar

[10]

F. Bullo and A. D. Lewis, "Geometric Control of Mechanical Systems,", Springer Verlag, (2004). Google Scholar

[11]

F. Bullo and K. M. Lynch, Kinematic controllability for decoupled trajectory planning in underactuated mechanical systems,, IEEE Trans. Robot. Autom., 17 (2001), 402. doi: 10.1109/70.954753. Google Scholar

[12]

D. Cheng, A. Astolfi and R. Ortega, On feedback equivalence to port controlled Hamiltonian systems,, Systems Control Lett., 54 (2005), 911. doi: 10.1016/j.sysconle.2005.02.005. Google Scholar

[13]

J. Cortés, A. J. van der Schaft and P. E. Crouch, Characterization of gradient control systems,, SIAM J. Control Optim., 44 (2005), 1192. doi: 10.1137/S0363012903425568. Google Scholar

[14]

M. Crampin, G. E. Prince and G. Thompson, A geometrical version of the Helmholtz conditions in time-dependent Lagrangian dynamics,, J. Phys. A-Math. Gen., 17 (1984), 1437. doi: 10.1088/0305-4470/17/7/011. Google Scholar

[15]

P. E. Crouch and A. J. van der Schaft, Hamiltonian and self-adjoint control systems,, Systems & Control Letters, 8 (1987), 289. doi: 10.1016/0167-6911(87)90093-4. Google Scholar

[16]

P. E. Crouch and A. J. van der Schaft, "Variational and Hamiltonian Control Systems,", Lectures Notes in Control and Inform. Sci. \textbf{101}, 101 (1987). Google Scholar

[17]

J. Douglas, Solution of the inverse problem of the calculus of variations,, Trans. Amer. Math. Soc., 50 (1941), 71. Google Scholar

[18]

R. B. Gardner, "The Method of Equivalence and its Applications,", CBMS Regional Conference Series in Applied Mathematics, 58 (1989). Google Scholar

[19]

R. B. Gardner and W. F. Shadwick, The GS algorithm for exact linearization to Brunovský normal form,, IEEE Trans. Automat. Control, 37 (1992), 224. doi: 10.1109/9.121623. Google Scholar

[20]

R. B. Gardner, W. F. Shadwick and G. R. Wilkens, Feedback equivalence and symmetries of Brunovský normal forms,, Contemp. Math., 97 (1989), 115. Google Scholar

[21]

J. Hauser, S. Sastry and G. Meyer, Nonlinear control design for slightly non-minimum phase systems: Application to V/STOL aircraft,, Automatica J. IFAC, 28 (1992), 665. doi: 10.1016/0005-1098(92)90029-F. Google Scholar

[22]

A. Isidori, "Nonlinear Control Systems,", 3rd edition, (1995). Google Scholar

[23]

B. Jakubczyk, Equivalence and invariants of nonlinear control systems,, in, (1990), 177. Google Scholar

[24]

B. Jakubczyk, Critical Hamiltonians and feedback invariants,, in, (1998), 219. Google Scholar

[25]

B. Jakubczyk, Feedback invariants and critical trajectories; Hamiltonian formalism for feedback equivalence,, in, 1 (2000), 545. Google Scholar

[26]

V. Jurdjevic, "Geometric Control Theory,", Cambridge University Press, (1997). Google Scholar

[27]

W. Kang and A. J. Krener, Extended quadratic controller normal form and dynamic feedback linearization of nonlinear systems,, SIAM J. Control Optim., 30 (1992), 1319. doi: 10.1137/0330070. Google Scholar

[28]

J. Koiller, Book review of "Analytical Mechanics: A comprehensive treatise on the dynamics of constrained systems for engineers, physicists and mathematicians," by John G. Papastavridis,, Bulletin (New Series) of the American Mathematical Society, 40 (2003), 405. Google Scholar

[29]

P. Kokkonen, "Energy-Shaping Control of Physical Systems (ESC),", Matematiikan Ja Tilastotieteen Laitos, (2007). Google Scholar

[30]

A. D. Lewis, Affine connections and distributions with applications to nonholonomic mechanics,, Rep. Math. Phys., 42 (1998), 135. doi: 10.1016/S0034-4877(98)80008-6. Google Scholar

[31]

A. D. Lewis, Affine connections control systems,, in, (2000), 128. Google Scholar

[32]

A. D. Lewis, The category of affine connection control systems,, in, (2000), 1260. Google Scholar

[33]

A. D. Lewis and R. M. Murray, Configuration Controllability of Simple Mechanical Control Systems,, SIAM J. Control Optim., 35 (1997), 766. doi: 10.1137/S0363012995287155. Google Scholar

[34]

A. D. Lewis and R. M. Murray, Decompositions for control systems on manifolds with an affine connection,, Syst. Contr. Lett., 31 (1997), 199. doi: 10.1016/S0167-6911(97)00040-6. Google Scholar

[35]

J. E. Marsden and T. Ratiu, "Introduction to Mechanics and Symmetry,", Springer-Verlag, (1994). Google Scholar

[36]

P. Martin, S. Devasia and B. Paden, A different look at output tracking: control of a VTOL aircraft,, in, (1994), 2376. Google Scholar

[37]

E. Martínez, J. F. Cariñena and W. Sarlet, A geometric characterization of separable second-order differential equations,, Mathematical Proceedings of the Cambridge Philosophical Society, 113 (1993), 205. doi: 10.1017/S0305004100075897. Google Scholar

[38]

M. Milam and R. M. Murray, A testbed for nonlinear flight control techniques: The Caltech ducted fan,, in, 1 (1999), 345. Google Scholar

[39]

G. Morandi, C. Ferrario, G. Lo Vecchio, G. Marmo and C. Rubano, The inverse problem in the calculus of variations and the geometry of the tangent bundle,, Physics Reports, 188 (1990), 147. doi: 10.1016/0370-1573(90)90137-Q. Google Scholar

[40]

R. M. Murray, Nonlinear control of mechanical systems: A Lagrangian perspective,, Annual Reviews in Control, 21 (1997), 31. doi: 10.1016/S1367-5788(97)00023-0. Google Scholar

[41]

R. M. Murray, Z. Li and S. S. Sastry, "A Mathematical Introduction to Robotic Manipulation,", Taylor & Francis Ltd, (1994). Google Scholar

[42]

H. Nijmeijer and A. J. van der Schaft, "Nonlinear Dynamical Control Systems,", Springer-Verlag, (1990). Google Scholar

[43]

R. Olfati-Saber, Global configuration stabilization for the VTOL aircraft with strong input coupling,, IEEE Trans. Automat. Control, 47 (2002), 1949. doi: 10.1109/TAC.2002.804457. Google Scholar

[44]

W. M. Oliva, "Geometric Mechanics,", Springer-Verlag, (2002). Google Scholar

[45]

R. Ortega, A. Loria, P. J. Nicklasson and H. Sira-Ramirez, "Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications,", Springer-Verlag, (1998). Google Scholar

[46]

R. H. Rand and D. V. Ramani, Nonlinear normal modes in a system with nonholonomic constraints,, Nonlinear Dynamics, 25 (2001), 49. doi: 10.1023/A:1012946515772. Google Scholar

[47]

W. Respondek, Feedback classification of nonlinear control systems in $\mathbbR^2$ and $\mathbbR^3$,, in, 207 (1998), 347. Google Scholar

[48]

W. Respondek, Introduction to geometric nonlinear control; linearization, observability and decoupling,, in, (2002), 169. Google Scholar

[49]

W. Respondek and S. Ricardo, Equivariants of mechanical control systems,, submitted, (2010). Google Scholar

[50]

W. Respondek and I. A. Tall, Feedback equivalence of nonlinear control systems: A survey on formal approach,, in, (2006), 137. Google Scholar

[51]

W. Respondek and M. Zhitomirskii, Feedback classification of nonlinear control systems on 3-manifolds,, Math. Control Signals Systems, 8 (1995), 299. doi: 10.1007/BF01209688. Google Scholar

[52]

S. Ricardo and W. Respondek, Geometry of second-order nonholonomic chained form systems,, submitted, (2010). Google Scholar

[53]

W. Sarlet, The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics,, J. Phys. A-Math. Theor., 15 (1982), 1503. doi: 10.1088/0305-4470/15/5/013. Google Scholar

[54]

W. Sarlet, Geometrical structures related to second-order equations,, Differential Geometry and Its Applications, (1987), 279. Google Scholar

[55]

S. Sastry, "Nonlinear Systems: Analysis, Stability, and Control,", Springer-Verlag, (1999). Google Scholar

[56]

E. D. Sontag, "Mathematical Control Theory: Deterministic Finite Dimensional Systems,", Springer-Verlag, (1998). Google Scholar

[57]

M. W. Spong, Underactuated mechanical systems,, in, 230 (1998), 135. Google Scholar

[58]

P. Tabuada and G. Pappas, From nonlinear to Hamiltonian via feedback,, IEEE Trans. Automat. Control, 48 (2003), 1439. doi: 10.1109/TAC.2003.815040. Google Scholar

[59]

A. J. van der Schaft, Symmetries, conservation laws and time-reversibility for Hamiltonian systems with external forces,, J. Math. Phys., 24 (1983), 2095. doi: 10.1063/1.525962. Google Scholar

[60]

J. Vankerschaver, F. Cantrijn, M. de León and D. Martín de Diego, Geometric aspects of nonholonomic field theories,, Rep. Math. Phys., 56 (2005), 387. doi: 10.1016/S0034-4877(05)80093-X. Google Scholar

[61]

M. Zhitomirskii and W. Respondek, Simple germs of corank one affine distributions,, Banach Center Publications, 44 (1998), 269. Google Scholar

show all references

References:
[1]

R. Abraham and J. E. Marsden, "Foundations of Mechanics,", Addison-Wesley, (1978). Google Scholar

[2]

A. A. Agrachev, Feedback-invariant optimal control theory and differential geometry. II. Jacobi curves for singular extremals,, J. Dynam. Control Systems, 4 (1998), 583. doi: 10.1023/A:1021871218615. Google Scholar

[3]

A. A. Agrachev and R. V. Gamkrelidze, Feedback-invariant optimal control theory and differential geometry. I. Regular extremals,, J. Dynam. Control Systems, 3 (1997), 343. doi: 10.1007/BF02463256. Google Scholar

[4]

A. A. Agrachev and Y. L. Sachkov, "Control Theory from the Geometric Viewpoint,", Springer-Verlag Berlin and Heidelberg, (2004). Google Scholar

[5]

I. Anderson and G. Thompson, The inverse problem of the calculus of variations for ordinary differential equations,, Mem. Amer. Math. Soc., 98 (1992), 108. Google Scholar

[6]

H. Arai, K. Tanie and N. Shiroma, Nonholonomic control of a three-DOF planar underactuated manipulator,, IEEE Trans. Robot. Autom., 14 (1998), 681. doi: 10.1109/70.720345. Google Scholar

[7]

A. M. Bloch, "Nonholonomics Mechanics and Control,", Springer-Verlag, (2003). doi: 10.1007/b97376. Google Scholar

[8]

B. Bonnard, Feedback equivalence for nonlinear systems and the time optimal control problem,, SIAM J. Control and Optim., 29 (1991), 1300. doi: 10.1137/0329067. Google Scholar

[9]

W. Boothby, "An Introduction to Differential Manifolds and Riemannian Geometry,", 2nd edition, (1986). Google Scholar

[10]

F. Bullo and A. D. Lewis, "Geometric Control of Mechanical Systems,", Springer Verlag, (2004). Google Scholar

[11]

F. Bullo and K. M. Lynch, Kinematic controllability for decoupled trajectory planning in underactuated mechanical systems,, IEEE Trans. Robot. Autom., 17 (2001), 402. doi: 10.1109/70.954753. Google Scholar

[12]

D. Cheng, A. Astolfi and R. Ortega, On feedback equivalence to port controlled Hamiltonian systems,, Systems Control Lett., 54 (2005), 911. doi: 10.1016/j.sysconle.2005.02.005. Google Scholar

[13]

J. Cortés, A. J. van der Schaft and P. E. Crouch, Characterization of gradient control systems,, SIAM J. Control Optim., 44 (2005), 1192. doi: 10.1137/S0363012903425568. Google Scholar

[14]

M. Crampin, G. E. Prince and G. Thompson, A geometrical version of the Helmholtz conditions in time-dependent Lagrangian dynamics,, J. Phys. A-Math. Gen., 17 (1984), 1437. doi: 10.1088/0305-4470/17/7/011. Google Scholar

[15]

P. E. Crouch and A. J. van der Schaft, Hamiltonian and self-adjoint control systems,, Systems & Control Letters, 8 (1987), 289. doi: 10.1016/0167-6911(87)90093-4. Google Scholar

[16]

P. E. Crouch and A. J. van der Schaft, "Variational and Hamiltonian Control Systems,", Lectures Notes in Control and Inform. Sci. \textbf{101}, 101 (1987). Google Scholar

[17]

J. Douglas, Solution of the inverse problem of the calculus of variations,, Trans. Amer. Math. Soc., 50 (1941), 71. Google Scholar

[18]

R. B. Gardner, "The Method of Equivalence and its Applications,", CBMS Regional Conference Series in Applied Mathematics, 58 (1989). Google Scholar

[19]

R. B. Gardner and W. F. Shadwick, The GS algorithm for exact linearization to Brunovský normal form,, IEEE Trans. Automat. Control, 37 (1992), 224. doi: 10.1109/9.121623. Google Scholar

[20]

R. B. Gardner, W. F. Shadwick and G. R. Wilkens, Feedback equivalence and symmetries of Brunovský normal forms,, Contemp. Math., 97 (1989), 115. Google Scholar

[21]

J. Hauser, S. Sastry and G. Meyer, Nonlinear control design for slightly non-minimum phase systems: Application to V/STOL aircraft,, Automatica J. IFAC, 28 (1992), 665. doi: 10.1016/0005-1098(92)90029-F. Google Scholar

[22]

A. Isidori, "Nonlinear Control Systems,", 3rd edition, (1995). Google Scholar

[23]

B. Jakubczyk, Equivalence and invariants of nonlinear control systems,, in, (1990), 177. Google Scholar

[24]

B. Jakubczyk, Critical Hamiltonians and feedback invariants,, in, (1998), 219. Google Scholar

[25]

B. Jakubczyk, Feedback invariants and critical trajectories; Hamiltonian formalism for feedback equivalence,, in, 1 (2000), 545. Google Scholar

[26]

V. Jurdjevic, "Geometric Control Theory,", Cambridge University Press, (1997). Google Scholar

[27]

W. Kang and A. J. Krener, Extended quadratic controller normal form and dynamic feedback linearization of nonlinear systems,, SIAM J. Control Optim., 30 (1992), 1319. doi: 10.1137/0330070. Google Scholar

[28]

J. Koiller, Book review of "Analytical Mechanics: A comprehensive treatise on the dynamics of constrained systems for engineers, physicists and mathematicians," by John G. Papastavridis,, Bulletin (New Series) of the American Mathematical Society, 40 (2003), 405. Google Scholar

[29]

P. Kokkonen, "Energy-Shaping Control of Physical Systems (ESC),", Matematiikan Ja Tilastotieteen Laitos, (2007). Google Scholar

[30]

A. D. Lewis, Affine connections and distributions with applications to nonholonomic mechanics,, Rep. Math. Phys., 42 (1998), 135. doi: 10.1016/S0034-4877(98)80008-6. Google Scholar

[31]

A. D. Lewis, Affine connections control systems,, in, (2000), 128. Google Scholar

[32]

A. D. Lewis, The category of affine connection control systems,, in, (2000), 1260. Google Scholar

[33]

A. D. Lewis and R. M. Murray, Configuration Controllability of Simple Mechanical Control Systems,, SIAM J. Control Optim., 35 (1997), 766. doi: 10.1137/S0363012995287155. Google Scholar

[34]

A. D. Lewis and R. M. Murray, Decompositions for control systems on manifolds with an affine connection,, Syst. Contr. Lett., 31 (1997), 199. doi: 10.1016/S0167-6911(97)00040-6. Google Scholar

[35]

J. E. Marsden and T. Ratiu, "Introduction to Mechanics and Symmetry,", Springer-Verlag, (1994). Google Scholar

[36]

P. Martin, S. Devasia and B. Paden, A different look at output tracking: control of a VTOL aircraft,, in, (1994), 2376. Google Scholar

[37]

E. Martínez, J. F. Cariñena and W. Sarlet, A geometric characterization of separable second-order differential equations,, Mathematical Proceedings of the Cambridge Philosophical Society, 113 (1993), 205. doi: 10.1017/S0305004100075897. Google Scholar

[38]

M. Milam and R. M. Murray, A testbed for nonlinear flight control techniques: The Caltech ducted fan,, in, 1 (1999), 345. Google Scholar

[39]

G. Morandi, C. Ferrario, G. Lo Vecchio, G. Marmo and C. Rubano, The inverse problem in the calculus of variations and the geometry of the tangent bundle,, Physics Reports, 188 (1990), 147. doi: 10.1016/0370-1573(90)90137-Q. Google Scholar

[40]

R. M. Murray, Nonlinear control of mechanical systems: A Lagrangian perspective,, Annual Reviews in Control, 21 (1997), 31. doi: 10.1016/S1367-5788(97)00023-0. Google Scholar

[41]

R. M. Murray, Z. Li and S. S. Sastry, "A Mathematical Introduction to Robotic Manipulation,", Taylor & Francis Ltd, (1994). Google Scholar

[42]

H. Nijmeijer and A. J. van der Schaft, "Nonlinear Dynamical Control Systems,", Springer-Verlag, (1990). Google Scholar

[43]

R. Olfati-Saber, Global configuration stabilization for the VTOL aircraft with strong input coupling,, IEEE Trans. Automat. Control, 47 (2002), 1949. doi: 10.1109/TAC.2002.804457. Google Scholar

[44]

W. M. Oliva, "Geometric Mechanics,", Springer-Verlag, (2002). Google Scholar

[45]

R. Ortega, A. Loria, P. J. Nicklasson and H. Sira-Ramirez, "Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications,", Springer-Verlag, (1998). Google Scholar

[46]

R. H. Rand and D. V. Ramani, Nonlinear normal modes in a system with nonholonomic constraints,, Nonlinear Dynamics, 25 (2001), 49. doi: 10.1023/A:1012946515772. Google Scholar

[47]

W. Respondek, Feedback classification of nonlinear control systems in $\mathbbR^2$ and $\mathbbR^3$,, in, 207 (1998), 347. Google Scholar

[48]

W. Respondek, Introduction to geometric nonlinear control; linearization, observability and decoupling,, in, (2002), 169. Google Scholar

[49]

W. Respondek and S. Ricardo, Equivariants of mechanical control systems,, submitted, (2010). Google Scholar

[50]

W. Respondek and I. A. Tall, Feedback equivalence of nonlinear control systems: A survey on formal approach,, in, (2006), 137. Google Scholar

[51]

W. Respondek and M. Zhitomirskii, Feedback classification of nonlinear control systems on 3-manifolds,, Math. Control Signals Systems, 8 (1995), 299. doi: 10.1007/BF01209688. Google Scholar

[52]

S. Ricardo and W. Respondek, Geometry of second-order nonholonomic chained form systems,, submitted, (2010). Google Scholar

[53]

W. Sarlet, The Helmholtz conditions revisited. A new approach to the inverse problem of Lagrangian dynamics,, J. Phys. A-Math. Theor., 15 (1982), 1503. doi: 10.1088/0305-4470/15/5/013. Google Scholar

[54]

W. Sarlet, Geometrical structures related to second-order equations,, Differential Geometry and Its Applications, (1987), 279. Google Scholar

[55]

S. Sastry, "Nonlinear Systems: Analysis, Stability, and Control,", Springer-Verlag, (1999). Google Scholar

[56]

E. D. Sontag, "Mathematical Control Theory: Deterministic Finite Dimensional Systems,", Springer-Verlag, (1998). Google Scholar

[57]

M. W. Spong, Underactuated mechanical systems,, in, 230 (1998), 135. Google Scholar

[58]

P. Tabuada and G. Pappas, From nonlinear to Hamiltonian via feedback,, IEEE Trans. Automat. Control, 48 (2003), 1439. doi: 10.1109/TAC.2003.815040. Google Scholar

[59]

A. J. van der Schaft, Symmetries, conservation laws and time-reversibility for Hamiltonian systems with external forces,, J. Math. Phys., 24 (1983), 2095. doi: 10.1063/1.525962. Google Scholar

[60]

J. Vankerschaver, F. Cantrijn, M. de León and D. Martín de Diego, Geometric aspects of nonholonomic field theories,, Rep. Math. Phys., 56 (2005), 387. doi: 10.1016/S0034-4877(05)80093-X. Google Scholar

[61]

M. Zhitomirskii and W. Respondek, Simple germs of corank one affine distributions,, Banach Center Publications, 44 (1998), 269. Google Scholar

[1]

Dominique Chapelle, Philippe Moireau, Patrick Le Tallec. Robust filtering for joint state-parameter estimation in distributed mechanical systems. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 65-84. doi: 10.3934/dcds.2009.23.65

[2]

Kathrin Flasskamp, Sebastian Hage-Packhäuser, Sina Ober-Blöbaum. Symmetry exploiting control of hybrid mechanical systems. Journal of Computational Dynamics, 2015, 2 (1) : 25-50. doi: 10.3934/jcd.2015.2.25

[3]

Leonardo Colombo, David Martín de Diego. Optimal control of underactuated mechanical systems with symmetries. Conference Publications, 2013, 2013 (special) : 149-158. doi: 10.3934/proc.2013.2013.149

[4]

Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003

[5]

Anthony M. Bloch, Rohit Gupta, Ilya V. Kolmanovsky. Neighboring extremal optimal control for mechanical systems on Riemannian manifolds. Journal of Geometric Mechanics, 2016, 8 (3) : 257-272. doi: 10.3934/jgm.2016007

[6]

Cédric M. Campos, Sina Ober-Blöbaum, Emmanuel Trélat. High order variational integrators in the optimal control of mechanical systems. Discrete & Continuous Dynamical Systems - A, 2015, 35 (9) : 4193-4223. doi: 10.3934/dcds.2015.35.4193

[7]

Firdaus E. Udwadia, Thanapat Wanichanon. On general nonlinear constrained mechanical systems. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 425-443. doi: 10.3934/naco.2013.3.425

[8]

Leo T. Butler. A note on integrable mechanical systems on surfaces. Discrete & Continuous Dynamical Systems - A, 2014, 34 (5) : 1873-1878. doi: 10.3934/dcds.2014.34.1873

[9]

Anthony M. Bloch, Peter E. Crouch, Nikolaj Nordkvist. Continuous and discrete embedded optimal control problems and their application to the analysis of Clebsch optimal control problems and mechanical systems. Journal of Geometric Mechanics, 2013, 5 (1) : 1-38. doi: 10.3934/jgm.2013.5.1

[10]

B. Kaymakcalan, R. Mert, A. Zafer. Asymptotic equivalence of dynamic systems on time scales. Conference Publications, 2007, 2007 (Special) : 558-567. doi: 10.3934/proc.2007.2007.558

[11]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of discrete mechanical systems by stages. Journal of Geometric Mechanics, 2016, 8 (1) : 35-70. doi: 10.3934/jgm.2016.8.35

[12]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems. Journal of Geometric Mechanics, 2010, 2 (1) : 69-111. doi: 10.3934/jgm.2010.2.69

[13]

Manuel Falconi, E. A. Lacomba, C. Vidal. The flow of classical mechanical cubic potential systems. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 827-842. doi: 10.3934/dcds.2004.11.827

[14]

Franco Cardin, Alberto Lovison. Finite mechanical proxies for a class of reducible continuum systems. Networks & Heterogeneous Media, 2014, 9 (3) : 417-432. doi: 10.3934/nhm.2014.9.417

[15]

Anthony M. Bloch, Melvin Leok, Jerrold E. Marsden, Dmitry V. Zenkov. Controlled Lagrangians and stabilization of discrete mechanical systems. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 19-36. doi: 10.3934/dcdss.2010.3.19

[16]

Viviana Alejandra Díaz, David Martín de Diego. Generalized variational calculus for continuous and discrete mechanical systems. Journal of Geometric Mechanics, 2018, 10 (4) : 373-410. doi: 10.3934/jgm.2018014

[17]

Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579

[18]

Ricardo Miranda Martins. Formal equivalence between normal forms of reversible and hamiltonian dynamical systems. Communications on Pure & Applied Analysis, 2014, 13 (2) : 703-713. doi: 10.3934/cpaa.2014.13.703

[19]

J. Gwinner. On differential variational inequalities and projected dynamical systems - equivalence and a stability result. Conference Publications, 2007, 2007 (Special) : 467-476. doi: 10.3934/proc.2007.2007.467

[20]

Keonhee Lee, Kazuhiro Sakai. Various shadowing properties and their equivalence. Discrete & Continuous Dynamical Systems - A, 2005, 13 (2) : 533-540. doi: 10.3934/dcds.2005.13.533

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (6)

Other articles
by authors

[Back to Top]