December  2010, 2(4): 343-374. doi: 10.3934/jgm.2010.2.343

Variational integrators for discrete Lagrange problems

1. 

Department of Mathematics, University of Salamanca, Salamanca 37008, Spain

2. 

Department of Applied Mathematics, University of Salamanca, Salamanca 37008, Spain

3. 

CINAMIL, Academia Militar, Amadora 2720-113, Portugal

Received  August 2010 Revised  December 2010 Published  January 2011

A discrete Lagrange problem is defined as a discrete Lagrangian system endowed with a constraint submanifold in the space of 1-jets of the discrete fibred manifold that configures the system. After defining the concepts of admissible section and infinitesimal admissible variation, the objective of these problems is to find admissible sections that are critical for the Lagrangian of the system with respect to the infinitesimal admissible variations. For admissible sections satisfying a certain regularity condition, we prove that critical sections are the solutions of an extended unconstrained discrete variational problem canonically associated to the problem of Lagrange (discrete Lagrange multiplier rule). Next, we define the concept of Cartan 1-form, establish a Noether theory for symmetries and introduce a notion of "constrained variational integrator" that we characterize through a Cartan equation ensuring its symplecticity. Under a certain regularity condition of the problem of Lagrange, we prove the existence and uniqueness of this kind of integrators in the neighborhood of a critical section, showing then that such integrators can be constructed from a generating function of the second class in the sense of symplectic geometry. Finally, the whole theory is illustrated with three elementary examples.
Citation: Pedro L. García, Antonio Fernández, César Rodrigo. Variational integrators for discrete Lagrange problems. Journal of Geometric Mechanics, 2010, 2 (4) : 343-374. doi: 10.3934/jgm.2010.2.343
References:
[1]

V. I. Arnol'd, V. V. Kozlov and A. I. Neĭshtadt, "Dynamical Systems III,", Encyclopaedia of Mathematical Sciences, 3 (1988). Google Scholar

[2]

R. Benito and D. Martín de Diego, Discrete vakonomic mechanics,, J. Math. Phys., 46 (2005). doi: 10.1063/1.2008214. Google Scholar

[3]

A. M. Bloch, "Nonholonomic Mechanics and Control,'', Interdisciplinary Applied Mathematics, 24 (2003). Google Scholar

[4]

F. Cardin and M. Favretti, On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints,, J. Geom. Phys., 18 (1996), 295. doi: 10.1016/0393-0440(95)00016-X. Google Scholar

[5]

J.-B. Chen, H.-Y. Guo and K. Wu, Total variation and variational symplectic-energy-momentum integrators,, preprint, (). Google Scholar

[6]

J.-B. Chen, H.-Y. Guo and K. Wu, Discrete total variation calculus and Lee's discrete mechanics,, Appl. Math. Comput., 177 (2006), 226. doi: 10.1016/j.amc.2005.11.002. Google Scholar

[7]

J. Cortés, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,'', Lect. Notes in Math. \textbf{1793}, 1793 (2002). Google Scholar

[8]

P. L. García, A. García and C. Rodrigo, Cartan forms for first order constrained variational problems,, J. Geom. Phys., 56 (2006), 571. doi: 10.1016/j.geomphys.2005.04.002. Google Scholar

[9]

P. L. García and C. Rodrigo, Cartan forms and second variation for constrained variational problems,, Proceedings of the VII International Conference on Geometry, (2006), 140. Google Scholar

[10]

H. Goldstein, "Classical Mechanics,'', Addison-Wesley Series in Physics, (1980). Google Scholar

[11]

X. Gràcia, J. Marín Solano and M. C. Muñoz Lecanda, Some geometric aspects of variational calculus in constrained systems,, Rep. Math. Phys., 51 (2003), 127. doi: 10.1016/S0034-4877(03)80006-X. Google Scholar

[12]

V. M. Guibout and A. Bloch, Discrete variational principles and Hamilton-Jacobi theory for mechanical systems and optimal control problems,, e-print ccsd-00002863, (): 1. Google Scholar

[13]

L. Hsu, Calculus of variations via the Griffiths formalism,, J. Diff. Geom., 36 (1992), 551. Google Scholar

[14]

T. D. Lee, Can time be a discrete dynamical variable?,, Phys. Lett. B, 122 (1983). doi: 10.1016/0370-2693(83)90687-1. Google Scholar

[15]

M. de León, D. Martín de Diego and A. Santamaría Merino, Geometric integrators and nonholonomic mechanics,, J. Math. Phys., 45 (2004). Google Scholar

[16]

M. de León, D. Martín de Diego and A. Santamaría Merino, Discrete variational integrators and optimal control theory,, Advances in Computational Mathematics, 26 (2006), 251. Google Scholar

[17]

M. de León, J. C. Marrero and D. Martín de Diego, Vakonomic mechanics versus non-holonomic mechanics: A unified geometrical approach,, J. Geom. Phys., 35 (2000), 126. doi: 10.1016/S0393-0440(00)00004-8. Google Scholar

[18]

J. E. Marsden, G. W. Patrick and S. Shkoller, Multisymplectic geometry, variational integrators and nonlinear PDEs,, Comm. in Math. Phys., 199 (1998), 351. Google Scholar

[19]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 317. doi: 10.1017/S096249290100006X. Google Scholar

[20]

S. Martínez, J. Cortés and M. de León, Symmetries in vakonomic dynamics: Applications to optimal control,, J. Geom. Phys., 38 (2001), 343. doi: 10.1016/S0393-0440(00)00069-3. Google Scholar

[21]

P. Piccione and D. V. Tausk, Lagrangian and Hamiltonian formalism for constrained variational problems,, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1417. Google Scholar

[22]

J. Vankerschaver, F. Cantrijn, M. de León and D. Martín de Diego, Geometric aspects of nonholonomic field theories,, Rep. Math. Phys., 56 (2005), 387. doi: 10.1016/S0034-4877(05)80093-X. Google Scholar

[23]

J. Vankerschaver and F. Cantrijn, Discrete Lagrangian field theories on Lie groupoids,, J. Geom. Phys., 57 (2007), 665. doi: 10.1016/j.geomphys.2006.05.006. Google Scholar

[24]

M. West, "Variational Integrators,'', Ph.D. Thesis, (2004). Google Scholar

show all references

References:
[1]

V. I. Arnol'd, V. V. Kozlov and A. I. Neĭshtadt, "Dynamical Systems III,", Encyclopaedia of Mathematical Sciences, 3 (1988). Google Scholar

[2]

R. Benito and D. Martín de Diego, Discrete vakonomic mechanics,, J. Math. Phys., 46 (2005). doi: 10.1063/1.2008214. Google Scholar

[3]

A. M. Bloch, "Nonholonomic Mechanics and Control,'', Interdisciplinary Applied Mathematics, 24 (2003). Google Scholar

[4]

F. Cardin and M. Favretti, On nonholonomic and vakonomic dynamics of mechanical systems with nonintegrable constraints,, J. Geom. Phys., 18 (1996), 295. doi: 10.1016/0393-0440(95)00016-X. Google Scholar

[5]

J.-B. Chen, H.-Y. Guo and K. Wu, Total variation and variational symplectic-energy-momentum integrators,, preprint, (). Google Scholar

[6]

J.-B. Chen, H.-Y. Guo and K. Wu, Discrete total variation calculus and Lee's discrete mechanics,, Appl. Math. Comput., 177 (2006), 226. doi: 10.1016/j.amc.2005.11.002. Google Scholar

[7]

J. Cortés, "Geometric, Control and Numerical Aspects of Nonholonomic Systems,'', Lect. Notes in Math. \textbf{1793}, 1793 (2002). Google Scholar

[8]

P. L. García, A. García and C. Rodrigo, Cartan forms for first order constrained variational problems,, J. Geom. Phys., 56 (2006), 571. doi: 10.1016/j.geomphys.2005.04.002. Google Scholar

[9]

P. L. García and C. Rodrigo, Cartan forms and second variation for constrained variational problems,, Proceedings of the VII International Conference on Geometry, (2006), 140. Google Scholar

[10]

H. Goldstein, "Classical Mechanics,'', Addison-Wesley Series in Physics, (1980). Google Scholar

[11]

X. Gràcia, J. Marín Solano and M. C. Muñoz Lecanda, Some geometric aspects of variational calculus in constrained systems,, Rep. Math. Phys., 51 (2003), 127. doi: 10.1016/S0034-4877(03)80006-X. Google Scholar

[12]

V. M. Guibout and A. Bloch, Discrete variational principles and Hamilton-Jacobi theory for mechanical systems and optimal control problems,, e-print ccsd-00002863, (): 1. Google Scholar

[13]

L. Hsu, Calculus of variations via the Griffiths formalism,, J. Diff. Geom., 36 (1992), 551. Google Scholar

[14]

T. D. Lee, Can time be a discrete dynamical variable?,, Phys. Lett. B, 122 (1983). doi: 10.1016/0370-2693(83)90687-1. Google Scholar

[15]

M. de León, D. Martín de Diego and A. Santamaría Merino, Geometric integrators and nonholonomic mechanics,, J. Math. Phys., 45 (2004). Google Scholar

[16]

M. de León, D. Martín de Diego and A. Santamaría Merino, Discrete variational integrators and optimal control theory,, Advances in Computational Mathematics, 26 (2006), 251. Google Scholar

[17]

M. de León, J. C. Marrero and D. Martín de Diego, Vakonomic mechanics versus non-holonomic mechanics: A unified geometrical approach,, J. Geom. Phys., 35 (2000), 126. doi: 10.1016/S0393-0440(00)00004-8. Google Scholar

[18]

J. E. Marsden, G. W. Patrick and S. Shkoller, Multisymplectic geometry, variational integrators and nonlinear PDEs,, Comm. in Math. Phys., 199 (1998), 351. Google Scholar

[19]

J. E. Marsden and M. West, Discrete mechanics and variational integrators,, Acta Numerica, 10 (2001), 317. doi: 10.1017/S096249290100006X. Google Scholar

[20]

S. Martínez, J. Cortés and M. de León, Symmetries in vakonomic dynamics: Applications to optimal control,, J. Geom. Phys., 38 (2001), 343. doi: 10.1016/S0393-0440(00)00069-3. Google Scholar

[21]

P. Piccione and D. V. Tausk, Lagrangian and Hamiltonian formalism for constrained variational problems,, Proc. Roy. Soc. Edinburgh Sect. A, 132 (2002), 1417. Google Scholar

[22]

J. Vankerschaver, F. Cantrijn, M. de León and D. Martín de Diego, Geometric aspects of nonholonomic field theories,, Rep. Math. Phys., 56 (2005), 387. doi: 10.1016/S0034-4877(05)80093-X. Google Scholar

[23]

J. Vankerschaver and F. Cantrijn, Discrete Lagrangian field theories on Lie groupoids,, J. Geom. Phys., 57 (2007), 665. doi: 10.1016/j.geomphys.2006.05.006. Google Scholar

[24]

M. West, "Variational Integrators,'', Ph.D. Thesis, (2004). Google Scholar

[1]

Matteo Focardi, Paolo Maria Mariano. Discrete dynamics of complex bodies with substructural dissipation: Variational integrators and convergence. Discrete & Continuous Dynamical Systems - B, 2009, 11 (1) : 109-130. doi: 10.3934/dcdsb.2009.11.109

[2]

David Iglesias-Ponte, Juan Carlos Marrero, David Martín de Diego, Edith Padrón. Discrete dynamics in implicit form. Discrete & Continuous Dynamical Systems - A, 2013, 33 (3) : 1117-1135. doi: 10.3934/dcds.2013.33.1117

[3]

Włodzimierz M. Tulczyjew, Paweł Urbański. Regularity of generating families of functions. Journal of Geometric Mechanics, 2010, 2 (2) : 199-221. doi: 10.3934/jgm.2010.2.199

[4]

Simone Vazzoler. A note on the normalization of generating functions. Journal of Geometric Mechanics, 2018, 10 (2) : 209-215. doi: 10.3934/jgm.2018008

[5]

Viviana Alejandra Díaz, David Martín de Diego. Generalized variational calculus for continuous and discrete mechanical systems. Journal of Geometric Mechanics, 2018, 10 (4) : 373-410. doi: 10.3934/jgm.2018014

[6]

Oscar E. Fernandez, Anthony M. Bloch, P. J. Olver. Variational Integrators for Hamiltonizable Nonholonomic Systems. Journal of Geometric Mechanics, 2012, 4 (2) : 137-163. doi: 10.3934/jgm.2012.4.137

[7]

Huiyan Xue, Antonella Zanna. Generating functions and volume preserving mappings. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1229-1249. doi: 10.3934/dcds.2014.34.1229

[8]

Lijin Wang, Jialin Hong. Generating functions for stochastic symplectic methods. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1211-1228. doi: 10.3934/dcds.2014.34.1211

[9]

Santos González, Llorenç Huguet, Consuelo Martínez, Hugo Villafañe. Discrete logarithm like problems and linear recurring sequences. Advances in Mathematics of Communications, 2013, 7 (2) : 187-195. doi: 10.3934/amc.2013.7.187

[10]

Roberto Alicandro, Andrea Braides, Marco Cicalese. Phase and anti-phase boundaries in binary discrete systems: a variational viewpoint. Networks & Heterogeneous Media, 2006, 1 (1) : 85-107. doi: 10.3934/nhm.2006.1.85

[11]

S. Aubry, G. Kopidakis, V. Kadelburg. Variational proof for hard Discrete breathers in some classes of Hamiltonian dynamical systems. Discrete & Continuous Dynamical Systems - B, 2001, 1 (3) : 271-298. doi: 10.3934/dcdsb.2001.1.271

[12]

Krzysztof Fujarewicz. Estimation of initial functions for systems with delays from discrete measurements. Mathematical Biosciences & Engineering, 2017, 14 (1) : 165-178. doi: 10.3934/mbe.2017011

[13]

Leonardo Colombo, Fernando Jiménez, David Martín de Diego. Variational integrators for mechanical control systems with symmetries. Journal of Computational Dynamics, 2015, 2 (2) : 193-225. doi: 10.3934/jcd.2015003

[14]

Masao Fukushima. A class of gap functions for quasi-variational inequality problems. Journal of Industrial & Management Optimization, 2007, 3 (2) : 165-171. doi: 10.3934/jimo.2007.3.165

[15]

Stefano Bianchini. On the Euler-Lagrange equation for a variational problem. Discrete & Continuous Dynamical Systems - A, 2007, 17 (3) : 449-480. doi: 10.3934/dcds.2007.17.449

[16]

Takeshi Fukao, Nobuyuki Kenmochi. Abstract theory of variational inequalities and Lagrange multipliers. Conference Publications, 2013, 2013 (special) : 237-246. doi: 10.3934/proc.2013.2013.237

[17]

Regina Sandra Burachik, Alex Rubinov. On the absence of duality gap for Lagrange-type functions. Journal of Industrial & Management Optimization, 2005, 1 (1) : 33-38. doi: 10.3934/jimo.2005.1.33

[18]

Len Margolin, Catherine Plesko. Discrete regularization. Evolution Equations & Control Theory, 2019, 8 (1) : 117-137. doi: 10.3934/eect.2019007

[19]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. I: Numerical tests and examples. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 41-74. doi: 10.3934/dcdsb.2010.14.41

[20]

Gerard Gómez, Josep–Maria Mondelo, Carles Simó. A collocation method for the numerical Fourier analysis of quasi-periodic functions. II: Analytical error estimates. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 75-109. doi: 10.3934/dcdsb.2010.14.75

2018 Impact Factor: 0.525

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (2)

[Back to Top]