Citation: |
[1] |
A. Awane, k-symplectic structures, J. Math. Phys., 33 (1992), 4046-4052.doi: 10.1063/1.529855. |
[2] |
A. Awane and M. Goze, "Pfaffian Systems, k-Symplectic Systems," Kluwer Acad. Pub., Dordrecht 2000. |
[3] |
F. Cantrijn, L. A. Ibort and M. De Leon, Hamiltonian structures on multisymplectic manifolds, Rend. Sem. Mat. Univ. Pol. Torino, 54 (1996), 225–-236. |
[4] |
J. F. Cariñena, M. Crampin and L. A. Ibort, On the multisymplectic formalism for first order theories, Differential Geom. Appl., 1 (1991), 354-374. |
[5] |
J. F. Cariñena, M. Crampin and L. A. Ibort, On the geometry of multisymplectic manifolds, J. Austral. Math. Soc. A, 66 (1999), 303-330. |
[6] |
A. Echeverria-Enriquez and M. C. Muñoz-Lecanda, Geometry of multisymplectic Hamiltonian first order theory, J. Math. Phys., 41 (2000), 7402-7444.doi: 10.1063/1.1308075. |
[7] |
M. Forger, C. Paufler and H. Römer, A general construction of Poisson brackets on exact multisymplectic manifolds, Rep. Math. Phys., 51 (2003), 187-195.doi: 10.1016/S0034-4877(03)80012-5. |
[8] |
M. Forger, C. Paufler and H. Römer, Hamiltonian multivector fields and Poisson forms in multisymplectic field theories, J Math. Phys., 46 (2005), 112903, 29 pp. |
[9] |
G. Giachetta and L. Mangiarotti, Constrained Hamiltonian systems and Gauge theories, Int. J. Theor. Phys., 34 (1995), 2353-2371.doi: 10.1007/BF00670772. |
[10] |
M. J. Gotay, J. Isenberg and J. E. Marsden, Momentum maps and classical relativistic fields, Part I: Covariant field theory, arXiv:physics/9801019v2, (2004). |
[11] |
M. J. Gotay, J. Isenberg and J. E. Marsden, Momentum maps and classical relativistic fields, Part II: Canonical analysis of field theories, arXiv:math-ph/0411032v1, (2004). |
[12] |
M. J. Gotay, A multisymplecitc framework for classical field theory and the calculus of variations I: Covariant Hamiltonian formalism, in "Francaviglia, M., editor, Mechanics, Analysis, and Geometry: 200 Years After Lagrange," 203–-235. North Holland, Amsterdam (1991). |
[13] |
M. J. Gotay, A multisymplectic framework for classical field theory and the calculus of variations II. Space + time decomposition, Differential Geom. Appl., 1 (1991), 375-390.doi: 10.1016/0926-2245(91)90014-Z. |
[14] |
J. Grabowski and P. Urbański, Algebroids - general differential calculi on vector bundles, J. Geom. Phys., 31 (1999), 111-1141.doi: 10.1016/S0393-0440(99)00007-8. |
[15] |
K. Grabowska and J. Grabowski, Variational calculus with constraints on general algebroids, J. Phys. A: Math. Theor., 41 (2008), 175204 (25pp). |
[16] |
K. Grabowska, J. Grabowski and P. Urbanski, AV-differential geometry: Poisson and Jacobi structures, J. Geom. Phys., 52 (2004), 398-446.doi: 10.1016/j.geomphys.2004.04.004. |
[17] |
K. Grabowska, J. Grabowski and P. Urbanski, Geometrical mechanics on algebroids, Int. J. Geom. Meth. Mod. Phys., 3 (2006), 559-575.doi: 10.1142/S0219887806001259. |
[18] |
T. Gotō, Relativistic quantum mechanics of one-dimensional mechanical continuum and subsidiary condition of dual resonance model, Prog. Theor. Phys., 46 (1971), 1560-1569.doi: 10.1143/PTP.46.1560. |
[19] |
C. Günther, The polysymplectic Hamiltonian formalism in field theory and calculus of variations I: The local case, J. Differential Geom., 25 (1987), 23-53. |
[20] |
F. Helein and J. Kouneiher, Covariant Hamiltonian formalism for the calculus of variations with several variables: Lepage-Dedecker vs. De Donder-Weyl, Adv. Theor. Math. Phys., 8 (2004), 565-601. |
[21] |
J. Kijowski, Elasticità finita e relativistica: introduzione ai metodi geometrici della teoria dei campi, Pitagora Editrice (Bologna) (1991). |
[22] |
J. Kijowski and W. M. Tulczyjew, "A Symplectic Framework for Field Theories," Lecture Notes in Physics, 107, Springer-Verlag, Berlin-New York, 1979. |
[23] |
J. Klein, Espaces variationelles et mécanique, Ann. Inst. Fourier (Grenoble), 12 (1962), 1-124. |
[24] |
K. Konieczna and P. Urbański, Double vector bundles and duality, Arch. Math. (Brno), 35 (1999), 59-95. |
[25] |
M. de León, J.-C. Marrero, E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math. Gen., 38 (2005), R241-308.doi: 10.1088/0305-4470/38/24/R01. |
[26] |
M. de León, D. Martín de Diego and A. Santamaría-Merino, Tulczyjew’s triples and lagrangian submanifolds in classical field theories, in "Applied Differential Geometry and Mechanics," Editors W. Sarlet and F. Cantrijn, Univ. of Gent, Gent, Academia Press (2003), 21-47. |
[27] |
E. Martínez, Lagrangian mechanics on Lie algebroids, Acta Appl. Math., 67 (2001), 295-320.doi: 10.1023/A:1011965919259. |
[28] |
E. Martínez, Variational calculus on Lie algebroids, ESAIM Control Optim. Calc. Var., 14 (2008), 356-380.doi: 10.1051/cocv:2007056. |
[29] |
Y. Nambu, "Lectures prepared for the Copenhagen Summer Symposium," (unpublished) (1970). |
[30] |
A. De Nicola and W. M. Tulczyjew, A variational formulation of electrodynamics with external sources, Int. J. Geom. Methods Mod. Phys., 6 (2009), 173-200.doi: 10.1142/S0219887809003461. |
[31] |
A. M. Polyakov, Quantum geometry of bosonic strings, Phys. Lett. B, 103 (1981), 207-210.doi: 10.1016/0370-2693(81)90743-7. |
[32] |
A. M. Rey, N. Roman-Roy, M. Salgado and S. Vilariño, k-Cosymplectic classical field theories: Tulczyjew, Skinner-Rusk and Lie algebroid formulations, arXiv:math-ph/0602038v2, (2008). |
[33] |
W. M. Tulczyjew, The origin of variational principles in Classical and quantum integrabilty, (Warsaw, 2001), Banach Center Pulbications 59, Polish Acad. Sci., (2003), 41-75. |
[34] |
W. M. Tulczyjew, Hamiltonian systems, Lagrangian systems, and the Legendre transformation, Symposia Mathematica, Vol. XIV (Convegno di Geometria Simplettica e Fisica Matematica, INDAM, Rome, 1973), pp. 247-–258. Academic Press, London, (1974). |
[35] |
W. M. Tulczyjew, "Geometric Formulation of Physical Theories," Bibliopolis, 1989. |
[36] |
W. M. Tulczyjew and P. Urbański, A slow and careful Legendre transformation for singular Lagrangians, The Infeld Centennial Meeting (Warsaw, 1998), Acta Phys. Polon. B, 30 (1999), 2909-2978. |
[37] |
J. Vankershaver, F. Cantrijn, M. De Leon and M. De Diego, Geometric aspects of nonholonomic field theories, Rep. Math. Phys., 46 (2005), 387-411.doi: 10.1016/S0034-4877(05)80093-X. |